BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 9126835)

  • 1. Multiple tertiary interactions involving domain II of group II self-splicing introns.
    Costa M; Déme E; Jacquier A; Michel F
    J Mol Biol; 1997 Apr; 267(3):520-36. PubMed ID: 9126835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressors of cis-acting splicing-deficient mutations that affect the ribozyme core of a group II intron.
    Robineau S; Bergantino E; Carignani G; Michel F; Netter P
    J Mol Biol; 1997 Apr; 267(3):537-47. PubMed ID: 9126836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An RNA conformational change between the two chemical steps of group II self-splicing.
    Chanfreau G; Jacquier A
    EMBO J; 1996 Jul; 15(13):3466-76. PubMed ID: 8670849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-splicing of a Podospora anserina group IIA intron in vitro. Effects of 3'-terminal intron alterations on cleavage at the 5' and 3' splice site.
    Schmidt U; Sägebarth R; Schmelzer C; Stahl U
    J Mol Biol; 1993 Jun; 231(3):559-68. PubMed ID: 8515440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core.
    Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Apr; 257(3):512-31. PubMed ID: 8648621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of deletions at structural domains of group II intron bI1 on self-splicing in vitro.
    Bachl J; Schmelzer C
    J Mol Biol; 1990 Mar; 212(1):113-25. PubMed ID: 2319592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse self-splicing of group II intron RNAs in vitro.
    Augustin S; Müller MW; Schweyen RJ
    Nature; 1990 Jan; 343(6256):383-6. PubMed ID: 1689013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A peripheral element assembles the compact core structure essential for group I intron self-splicing.
    Xiao M; Li T; Yuan X; Shang Y; Wang F; Chen S; Zhang Y
    Nucleic Acids Res; 2005; 33(14):4602-11. PubMed ID: 16100381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA.
    Geese WJ; Waring RB
    J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The receptor for branch-site docking within a group II intron active site.
    Hamill S; Pyle AM
    Mol Cell; 2006 Sep; 23(6):831-40. PubMed ID: 16973435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tight binding of the 5' exon to domain I of a group II self-splicing intron requires completion of the intron active site.
    Costa M; Michel F
    EMBO J; 1999 Feb; 18(4):1025-37. PubMed ID: 10022844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction.
    Sashital DG; Cornilescu G; McManus CJ; Brow DA; Butcher SE
    Nat Struct Mol Biol; 2004 Dec; 11(12):1237-42. PubMed ID: 15543154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of the cooperative unfolding of the sunY group I intron of bacteriophage T4. The active form of the sunY ribozyme is stabilized by multiple interactions with 3' terminal intron components.
    Jaeger L; Westhof E; Michel F
    J Mol Biol; 1993 Nov; 234(2):331-46. PubMed ID: 8230218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme.
    Lehnert V; Jaeger L; Michel F; Westhof E
    Chem Biol; 1996 Dec; 3(12):993-1009. PubMed ID: 9000010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of structural elements critical for inter-domain interactions in a group II self-splicing intron.
    Jestin JL; Dème E; Jacquier A
    EMBO J; 1997 May; 16(10):2945-54. PubMed ID: 9184238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing.
    Ho Y; Waring RB
    J Mol Biol; 1999 Oct; 292(5):987-1001. PubMed ID: 10512698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns.
    Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM
    J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining functional groups, core structural features and inter-domain tertiary contacts essential for group II intron self-splicing: a NAIM analysis.
    Boudvillain M; Pyle AM
    EMBO J; 1998 Dec; 17(23):7091-104. PubMed ID: 9843513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.