These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 9128101)
21. Isolation of three antibacterial peptides from pig intestine: gastric inhibitory polypeptide (7-42), diazepam-binding inhibitor (32-86) and a novel factor, peptide 3910. Agerberth B; Boman A; Andersson M; Jörnvall H; Mutt V; Boman HG Eur J Biochem; 1993 Sep; 216(2):623-9. PubMed ID: 8375398 [TBL] [Abstract][Full Text] [Related]
22. Characterization of bactericidal efficiency, cell selectivity, and mechanism of short interspecific hybrid peptides. Dong N; Li XR; Xu XY; Lv YF; Li ZY; Shan AS; Wang JL Amino Acids; 2018 Apr; 50(3-4):453-468. PubMed ID: 29282543 [TBL] [Abstract][Full Text] [Related]
23. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Tam JP; Lu YA; Yang JL; Chiu KW Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8913-8. PubMed ID: 10430870 [TBL] [Abstract][Full Text] [Related]
24. Short antibacterial peptides with significantly reduced hemolytic activity can be identified by a systematic L-to-D exchange scan of their amino acid residues. Albada HB; Prochnow P; Bobersky S; Langklotz S; Bandow JE; Metzler-Nolte N ACS Comb Sci; 2013 Nov; 15(11):585-92. PubMed ID: 24147906 [TBL] [Abstract][Full Text] [Related]
25. Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Wade D; Andreu D; Mitchell SA; Silveira AM; Boman A; Boman HG; Merrifield RB Int J Pept Protein Res; 1992 Nov; 40(5):429-36. PubMed ID: 1483838 [TBL] [Abstract][Full Text] [Related]
26. Antimicrobial peptides from the Brazilian frog Phyllomedusa distincta. Batista CV; da Silva LR; Sebben A; Scaloni A; Ferrara L; Paiva GR; Olamendi-Portugal T; Possani LD; Bloch C Peptides; 1999; 20(6):679-86. PubMed ID: 10477123 [TBL] [Abstract][Full Text] [Related]
27. Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Shamova O; Brogden KA; Zhao C; Nguyen T; Kokryakov VN; Lehrer RI Infect Immun; 1999 Aug; 67(8):4106-11. PubMed ID: 10417180 [TBL] [Abstract][Full Text] [Related]
28. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Boman HG; Agerberth B; Boman A Infect Immun; 1993 Jul; 61(7):2978-84. PubMed ID: 8514403 [TBL] [Abstract][Full Text] [Related]
29. Cecropin D-like antibacterial peptides from the sphingid moth, Agrius convolvuli. Lee IH; Chang KY; Choi CS; Kim HR Arch Insect Biochem Physiol; 1999; 41(4):178-85. PubMed ID: 10421892 [TBL] [Abstract][Full Text] [Related]
30. Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides. Mai XT; Huang J; Tan J; Huang Y; Chen Y J Pept Sci; 2015 Jul; 21(7):561-8. PubMed ID: 25826179 [TBL] [Abstract][Full Text] [Related]
31. De novo antimicrobial peptides with low mammalian cell toxicity. Javadpour MM; Juban MM; Lo WC; Bishop SM; Alberty JB; Cowell SM; Becker CL; McLaughlin ML J Med Chem; 1996 Aug; 39(16):3107-13. PubMed ID: 8759631 [TBL] [Abstract][Full Text] [Related]
32. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Gazit E; Boman A; Boman HG; Shai Y Biochemistry; 1995 Sep; 34(36):11479-88. PubMed ID: 7547876 [TBL] [Abstract][Full Text] [Related]
33. Proline residue-modified polycationic analogs of gramicidin S with high antibacterial activity against both Gram-positive and Gram-negative bacteria and low hemolytic activity. Kawai M; Yamamura H; Tanaka R; Umemoto H; Ohmizo C; Higuchi S; Katsu T J Pept Res; 2005 Jan; 65(1):98-104. PubMed ID: 15686540 [TBL] [Abstract][Full Text] [Related]
36. The Magainins: sequence factors relevant to increased antimicrobial activity and decreased hemolytic activity. Cuervo JH; Rodriguez B; Houghten RA Pept Res; 1988; 1(2):81-6. PubMed ID: 2980783 [TBL] [Abstract][Full Text] [Related]
37. cDNA cloning and antibacterial activities of cecropin D-like peptides from Agrius convolvuli. Kim CR; Lee YH; Bang IS; Kim ES; Kang CS; Yun CY; Lee IH Arch Insect Biochem Physiol; 2000 Dec; 45(4):149-55. PubMed ID: 11223934 [TBL] [Abstract][Full Text] [Related]
38. Influence of the Multivalency of Ultrashort Arg-Trp-Based Antimicrobial Peptides (AMP) on Their Antibacterial Activity. Hoffknecht BC; Worm DJ; Bobersky S; Prochnow P; Bandow JE; Metzler-Nolte N ChemMedChem; 2015 Sep; 10(9):1564-9. PubMed ID: 26149664 [TBL] [Abstract][Full Text] [Related]
39. Lipopolysaccharide-bound structure of the antimicrobial peptide cecropin P1 determined by nuclear magnetic resonance spectroscopy. Baek MH; Kamiya M; Kushibiki T; Nakazumi T; Tomisawa S; Abe C; Kumaki Y; Kikukawa T; Demura M; Kawano K; Aizawa T J Pept Sci; 2016 Apr; 22(4):214-21. PubMed ID: 26939541 [TBL] [Abstract][Full Text] [Related]
40. Influence of N-terminus modifications on the biological activity, membrane interaction, and secondary structure of the antimicrobial peptide hylin-a1. Crusca E; Rezende AA; Marchetto R; Mendes-Giannini MJ; Fontes W; Castro MS; Cilli EM Biopolymers; 2011; 96(1):41-8. PubMed ID: 20560142 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]