These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 9128139)
1. Cysteine-286 as the site of acylation of the Lux-specific fatty acyl-CoA reductase. Lee CY; Meighen EA Biochim Biophys Acta; 1997 Apr; 1338(2):215-22. PubMed ID: 9128139 [TBL] [Abstract][Full Text] [Related]
2. Identification of the acyl transfer site of fatty acyl-protein synthetase from bioluminescent bacteria. Soly RR; Meighen EA J Mol Biol; 1991 May; 219(1):69-77. PubMed ID: 2023262 [TBL] [Abstract][Full Text] [Related]
3. Nucleotide sequence and functional analysis of the luxE gene encoding acyl-protein synthetase of the lux operon from Photobacterium leiognathi. Lin JW; Chao YF; Weng SF Biochem Biophys Res Commun; 1996 Nov; 228(3):764-73. PubMed ID: 8941351 [TBL] [Abstract][Full Text] [Related]
4. Hyperactivity and interactions of a chimeric myristoryl-ACP thioesterase from the lux system of luminescent bacteria. Li J; Szittner R; Meighen EA Biochim Biophys Acta; 2000 Sep; 1481(2):237-46. PubMed ID: 11018714 [TBL] [Abstract][Full Text] [Related]
5. Nucleotide sequence of the luxC gene encoding fatty acid reductase of the lux operon from Photobacterium leiognathi. Lin JW; Chao YF; Weng SF Biochem Biophys Res Commun; 1993 Feb; 191(1):314-8. PubMed ID: 8447834 [TBL] [Abstract][Full Text] [Related]
6. Cryo-EM structure of the fatty acid reductase LuxC-LuxE complex provides insights into bacterial bioluminescence. Tian Q; Wu J; Xu H; Hu Z; Huo Y; Wang L J Biol Chem; 2022 Jun; 298(6):102006. PubMed ID: 35504354 [TBL] [Abstract][Full Text] [Related]
7. Characteristic analysis of the luxG gene encoding the probable flavin reductase that resides in the lux operon of Photobacterium leiognathi. Lin JW; Chao YF; Weng SF Biochem Biophys Res Commun; 1998 May; 246(2):446-52. PubMed ID: 9610381 [TBL] [Abstract][Full Text] [Related]
8. Covalent reaction of cerulenin at the active site of acyl-CoA reductase of Photobacterium phosphoreum. Wall L; Meighen E Biochem Cell Biol; 1989; 67(2-3):163-7. PubMed ID: 2751874 [TBL] [Abstract][Full Text] [Related]
9. The lux genes of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish. Nucleotide sequence, difference in gene organization, and high expression in mutant Escherichia coli. Lee CY; Szittner RB; Meighen EA Eur J Biochem; 1991 Oct; 201(1):161-7. PubMed ID: 1915359 [TBL] [Abstract][Full Text] [Related]
10. An essential histidine residue required for fatty acylation and acyl transfer by myristoyltransferase from luminescent bacteria. Ferri SR; Meighen EA J Biol Chem; 1994 Mar; 269(9):6683-8. PubMed ID: 8120025 [TBL] [Abstract][Full Text] [Related]
11. Differential acylation in vitro with tetradecanoyl coenzyme A and tetradecanoic acid (+ATP) of three polypeptides shown to have induced synthesis in Photobacterium phosphoreum. Wall L; Rodriquez A; Meighen E J Biol Chem; 1984 Feb; 259(3):1409-14. PubMed ID: 6693412 [TBL] [Abstract][Full Text] [Related]
12. Cloning and expression of the Photobacterium phosphoreum luminescence system demonstrates a unique lux gene organization. Mancini JA; Boylan M; Soly RR; Graham AF; Meighen EA J Biol Chem; 1988 Oct; 263(28):14308-14. PubMed ID: 3049575 [TBL] [Abstract][Full Text] [Related]
13. Resolution of the fatty acid reductase from Photobacterium phosphoreum into acyl protein synthetase and acyl-CoA reductase activities. Evidence for an enzyme complex. Riendeau D; Rodriguez A; Meighen E J Biol Chem; 1982 Jun; 257(12):6908-15. PubMed ID: 7085612 [No Abstract] [Full Text] [Related]
14. The lumQ gene is linked to the lumP gene and the lux operon in Photobacterium leiognathi. Lin JW; Yu KY; Chao YF; Weng SF Biochem Biophys Res Commun; 1995 Dec; 217(2):684-95. PubMed ID: 7503752 [TBL] [Abstract][Full Text] [Related]
15. Conversion of serine-114 to cysteine-114 and the role of the active site nucleophile in acyl transfer by myristoyl-ACP thioesterase from Vibrio harveyi. Li J; Szittner R; Derewenda ZS; Meighen EA Biochemistry; 1996 Aug; 35(31):9967-73. PubMed ID: 8756458 [TBL] [Abstract][Full Text] [Related]
16. Fatty acyl-AMP as an intermediate in fatty acid reduction to aldehyde in luminescent bacteria. Rodriguez A; Meighen E J Biol Chem; 1985 Jan; 260(2):771-4. PubMed ID: 3968067 [TBL] [Abstract][Full Text] [Related]
17. Sequence of the luxD gene encoding acyltransferase of the lux operon from Photobacterium leiognathi. Chao YF; Weng SF; Lin JW Gene; 1993 Apr; 126(1):155-6. PubMed ID: 8472957 [TBL] [Abstract][Full Text] [Related]
18. Intersubunit transfer of fatty acyl groups during fatty acid reduction. Wall L; Rodriguez A; Meighen E J Biol Chem; 1986 Dec; 261(34):15981-8. PubMed ID: 3782102 [TBL] [Abstract][Full Text] [Related]
19. A lux-specific myristoyl transferase in luminescent bacteria related to eukaryotic serine esterases. Ferri SR; Meighen EA J Biol Chem; 1991 Jul; 266(20):12852-7. PubMed ID: 2071574 [TBL] [Abstract][Full Text] [Related]
20. Fatty acid reductase in bioluminescent bacteria. Resolution from aldehyde reductases and characterization of the aldehyde product. Riendeau D; Meighen E Can J Biochem; 1981 Jun; 59(6):440-6. PubMed ID: 7296339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]