BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 9128140)

  • 1. Monofunctional domains of formiminotransferase-cyclodeaminase retain similar conformational stabilities outside the bifunctional octamer.
    Murley LL; MacKenzie RE
    Biochim Biophys Acta; 1997 Apr; 1338(2):223-32. PubMed ID: 9128140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation of the octameric bifunctional enzyme formiminotransferase-cyclodeaminase in urea. Isolation of two monofunctional dimers.
    Findlay WA; MacKenzie RE
    Biochemistry; 1987 Apr; 26(7):1948-54. PubMed ID: 3593701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The two monofunctional domains of octameric formiminotransferase-cyclodeaminase exist as dimers.
    Murley LL; MacKenzie RE
    Biochemistry; 1995 Aug; 34(33):10358-64. PubMed ID: 7654689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renaturation of formiminotransferase-cyclodeaminase from guanidine hydrochloride. Quaternary structure requirements for the activities and polyglutamate specificity.
    Findlay WA; MacKenzie RE
    Biochemistry; 1988 May; 27(9):3404-8. PubMed ID: 3390440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bifunctional enzyme formiminotransferase-cyclodeaminase is a tetramer of dimers.
    MacKenzie RE; Aldridge M; Paquin J
    J Biol Chem; 1980 Oct; 255(19):9474-8. PubMed ID: 7410436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of the formiminotransferase domain of formiminotransferase-cyclodeaminase: implications for substrate channeling in a bifunctional enzyme.
    Kohls D; Sulea T; Purisima EO; MacKenzie RE; Vrielink A
    Structure; 2000 Jan; 8(1):35-46. PubMed ID: 10673422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Class sigma glutathione transferase unfolds via a dimeric and a monomeric intermediate: impact of subunit interface on conformational stability in the superfamily.
    Stevens JM; Hornby JA; Armstrong RN; Dirr HW
    Biochemistry; 1998 Nov; 37(44):15534-41. PubMed ID: 9799517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetrameric and octameric lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. Structure and stability of the two active forms.
    Dams T; Ostendorp R; Ott M; Rutkat K; Jaenicke R
    Eur J Biochem; 1996 Aug; 240(1):274-9. PubMed ID: 8925837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urea and thermal equilibrium denaturation studies on the dimerization domain of Escherichia coli Trp repressor.
    Gloss LM; Matthews CR
    Biochemistry; 1997 May; 36(19):5612-23. PubMed ID: 9153401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization and preliminary X-ray analysis of the formiminotransferase domain from the bifunctional enzyme formiminotransferase-cyclodeaminase.
    Kohls D; Croteau N; Mejia N; MacKenzie RE; Vrielink A
    Acta Crystallogr D Biol Crystallogr; 1999 Jun; 55(Pt 6):1206-8. PubMed ID: 10329787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human placental estradiol 17 beta-dehydrogenase: structural and catalytic changes during urea denaturation.
    Mendoza-Hernández G; Rendón JL
    Biochim Biophys Acta; 1996 Oct; 1297(2):219-27. PubMed ID: 8917625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple unfolding intermediates of human placental alkaline phosphatase in equilibrium urea denaturation.
    Hung HC; Chang GG
    Biophys J; 2001 Dec; 81(6):3456-71. PubMed ID: 11721007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Channeling between the active sites of formiminotransferase-cyclodeaminase. Binding and kinetic studies.
    Paquin J; Baugh CM; MacKenzie RE
    J Biol Chem; 1985 Dec; 260(28):14925-31. PubMed ID: 4066660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the bifunctional and Golgi-associated formiminotransferase cyclodeaminase octamer.
    Mao Y; Vyas NK; Vyas MN; Chen DH; Ludtke SJ; Chiu W; Quiocho FA
    EMBO J; 2004 Aug; 23(15):2963-71. PubMed ID: 15272307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability and unfolding of reduced Escherichia coli glutaredoxin 2: a monomeric structural homologue of the glutathione transferase family.
    Gildenhuys S; Wallace LA; Dirr HW
    Biochemistry; 2008 Oct; 47(40):10801-8. PubMed ID: 18788752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nucleotide sequence of porcine formiminotransferase cyclodeaminase. Expression and purification from Escherichia coli.
    Murley LL; Mejia NR; MacKenzie RE
    J Biol Chem; 1993 Oct; 268(30):22820-4. PubMed ID: 7901203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic analysis of unfolding and dissociation in lactose repressor protein.
    Barry JK; Matthews KS
    Biochemistry; 1999 May; 38(20):6520-8. PubMed ID: 10350470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal and urea-induced unfolding in T7 RNA polymerase: calorimetry, circular dichroism and fluorescence study.
    Griko Y; Sreerama N; Osumi-Davis P; Woody RW; Woody AY
    Protein Sci; 2001 Apr; 10(4):845-53. PubMed ID: 11274475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formiminotransferase-cyclodeaminase from porcine liver. A sulfhydryl essential for the deaminase activity of the bifunctional enzyme.
    Drury EJ; MacKenzie RE
    Can J Biochem; 1977 Sep; 55(9):919-23. PubMed ID: 561642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urea-induced unfolding and conformational stability of 3-isopropylmalate dehydrogenase from the Thermophile thermus thermophilus and its mesophilic counterpart from Escherichia coli.
    Motono C; Yamagishi A; Oshima T
    Biochemistry; 1999 Jan; 38(4):1332-7. PubMed ID: 9930995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.