These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Voltage-clamp analysis of neurons within deep layers of the brain. Richter DW; Pierrefiche O; Lalley PM; Polder HR J Neurosci Methods; 1996 Aug; 67(2):121-3. PubMed ID: 8872877 [TBL] [Abstract][Full Text] [Related]
5. Estimated single-channel conductance of mechanically-activated channels in a spider mechanoreceptor. Höger U; French AS Brain Res; 1999 May; 826(2):230-5. PubMed ID: 10224300 [TBL] [Abstract][Full Text] [Related]
6. Recording from cuticular mechanoreceptors during mechanical stimulation. Juusola M; French AS Pflugers Arch; 1995 Nov; 431(1):125-8. PubMed ID: 8584409 [TBL] [Abstract][Full Text] [Related]
7. Making patch-pipettes and sharp electrodes with a programmable puller. Brown AL; Johnson BE; Goodman MB J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078940 [TBL] [Abstract][Full Text] [Related]
8. Active signal conduction through the sensory dendrite of a spider mechanoreceptor neuron. Gingl E; French AS J Neurosci; 2003 Jul; 23(14):6096-101. PubMed ID: 12853428 [TBL] [Abstract][Full Text] [Related]
9. Two-microelectrode voltage clamp of Xenopus oocytes: voltage errors and compensation for local current flow. Baumgartner W; Islas L; Sigworth FJ Biophys J; 1999 Oct; 77(4):1980-91. PubMed ID: 10512818 [TBL] [Abstract][Full Text] [Related]
10. Glass microelectrode tip capacitance: its measurement and a method for its reduction. Cornwall MC; Thomas MV J Neurosci Methods; 1981 Feb; 3(3):225-32. PubMed ID: 7218851 [TBL] [Abstract][Full Text] [Related]
11. Detachable glass microelectrodes for recording action potentials in active moving organs. Barbic M; Moreno A; Harris TD; Kay MW Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1248-H1259. PubMed ID: 28476925 [TBL] [Abstract][Full Text] [Related]
12. Pressure polishing: a method for re-shaping patch pipettes during fire polishing. Goodman MB; Lockery SR J Neurosci Methods; 2000 Jul; 100(1-2):13-5. PubMed ID: 11040361 [TBL] [Abstract][Full Text] [Related]
14. Pressure-polishing pipettes for improved patch-clamp recording. Johnson BE; Brown AL; Goodman MB J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078936 [TBL] [Abstract][Full Text] [Related]
15. Sodium-dependent receptor current in a new mechanoreceptor preparation. Juusola M; Seyfarth EA; French AS J Neurophysiol; 1994 Dec; 72(6):3026-8. PubMed ID: 7897509 [TBL] [Abstract][Full Text] [Related]
16. Glass pipette-carbon fiber microelectrodes for evoked potential recordings. Moraes MF; Garcia-Cairasco N Braz J Med Biol Res; 1997 Nov; 30(11):1319-24. PubMed ID: 9532241 [TBL] [Abstract][Full Text] [Related]
17. Gigaseal mechanics: creep of the gigaseal under the action of pressure, adhesion, and voltage. Slavchov RI; Nomura T; Martinac B; Sokabe M; Sachs F J Phys Chem B; 2014 Nov; 118(44):12660-72. PubMed ID: 25295693 [TBL] [Abstract][Full Text] [Related]
18. Determination and compensation of series resistances during whole-cell patch-clamp recordings using an active bridge circuit and the phase-sensitive technique. Riedemann T; Polder HR; Sutor B Pflugers Arch; 2016 Oct; 468(10):1725-40. PubMed ID: 27539299 [TBL] [Abstract][Full Text] [Related]
19. Problems of recordings of nervous activity with glass microelectrodes in the CNS of insects. Otto C; Kalmring K; Lorenzen S; Sippel M Biol Cybern; 1983; 49(1):63-7. PubMed ID: 6317063 [TBL] [Abstract][Full Text] [Related]
20. Causes of transient instabilities in the dynamic clamp. Preyer AJ; Butera RJ IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):190-8. PubMed ID: 19228559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]