These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 9128726)

  • 1. Model of the pH-dependence of the concentrations of complexes involving metabolites, haemoglobin and magnesium ions in the human erythrocyte.
    Mulquiney PJ; Kuchel PW
    Eur J Biochem; 1997 Apr; 245(1):71-83. PubMed ID: 9128726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free magnesium-ion concentration in erythrocytes by 31P NMR: the effect of metabolite-haemoglobin interactions.
    Mulquiney PJ; Kuchel PW
    NMR Biomed; 1997 May; 10(3):129-37. PubMed ID: 9408922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of the glycolysis of human erythrocytes to the transition from the oxygenated to the deoxygenated state at constant intracellular pH.
    Rapoprot I; Berger H; Rapoport SM; Elsner R; Gerber G
    Biochim Biophys Acta; 1976 Mar; 428(1):193-204. PubMed ID: 4113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The regulatory role for magnesium in glycolytic flux of the human erythrocyte.
    Laughlin MR; Thompson D
    J Biol Chem; 1996 Nov; 271(46):28977-83. PubMed ID: 8910548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refinement and evaluation of a model of Mg2+ buffering in human red cells.
    Raftos JE; Lew VL; Flatman PW
    Eur J Biochem; 1999 Aug; 263(3):635-45. PubMed ID: 10469126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular free magnesium and phosphorylated metabolites in hexokinase- and pyruvate kinase-deficient red cells measured using 31P-NMR spectroscopy.
    Ouwerkerk R; van Echteld CJ; Staal GE; Rijksen G
    Biochim Biophys Acta; 1989 Mar; 1010(3):294-303. PubMed ID: 2920177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative evaluation of respiration induced metabolic oscillations in erythrocytes.
    Hald B; Madsen MF; Danø S; Quistorff B; Sørensen PG
    Biophys Chem; 2009 Apr; 141(1):41-8. PubMed ID: 19162390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement.
    Mulquiney PJ; Kuchel PW
    Biochem J; 1999 Sep; 342 Pt 3(Pt 3):581-96. PubMed ID: 10477269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: computer simulation and metabolic control analysis.
    Mulquiney PJ; Kuchel PW
    Biochem J; 1999 Sep; 342 Pt 3(Pt 3):597-604. PubMed ID: 10477270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Importance of binding of 2,3-diphosphoglycerate and ATP to hemoglobin for erythrocyte glycolysis: activation by 2,3-diphosphoglycerate of hexokinase at intracellular conditions].
    Geier T; Glende M; Reich JG
    Acta Biol Med Ger; 1978; 37(1):59-72. PubMed ID: 706929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of magnesium and chloride ions to human hemoglobin A. Mg2+ concentrations in solutions simulating red cell conditions.
    Achilles W; Cumme GA; Winnefeld K; Frunder H
    Eur J Biochem; 1981 Dec; 120(3):571-6. PubMed ID: 7333281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 31P-NMR measurements of ATP, ADP, 2,3-diphosphoglycerate and Mg2+ in human erythrocytes.
    Petersen A; Kristensen SR; Jacobsen JP; Hørder M
    Biochim Biophys Acta; 1990 Aug; 1035(2):169-74. PubMed ID: 2393665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory properties of human erythrocyte hexokinase during cell ageing.
    Fornaini G; Magnani M; Fazi A; Accorsi A; Stocchi V; Dachà M
    Arch Biochem Biophys; 1985 Jun; 239(2):352-8. PubMed ID: 3873907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemoglobin affinity for 2,3-bisphosphoglycerate in solutions and intact erythrocytes: studies using pulsed-field gradient nuclear magnetic resonance and Monte Carlo simulations.
    Lennon AJ; Scott NR; Chapman BE; Kuchel PW
    Biophys J; 1994 Nov; 67(5):2096-109. PubMed ID: 7858147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic homeostasis in the human erythrocyte: in silico analysis.
    de Atauri P; Ramírez MJ; Kuchel PW; Carreras J; Cascante M
    Biosystems; 2006; 83(2-3):118-24. PubMed ID: 16236423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of pH-induced changes of the glycolysis of human erythrocytes.
    Rapoport I; Rapoport TA; Rapoport SM
    Acta Biol Med Ger; 1978; 37(3):393-401. PubMed ID: 32713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Determination of the concentration of free magnesium ions in hemolysates of oxygenated and deoxygenated packed human erythrocytes].
    Achilles W; Klinger R; Scheidt B; Frunder H
    Acta Biol Med Ger; 1978; 37(8):1161-6. PubMed ID: 749452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: in vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR.
    Mulquiney PJ; Bubb WA; Kuchel PW
    Biochem J; 1999 Sep; 342 Pt 3(Pt 3):567-80. PubMed ID: 10477268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythrocyte metabolism and function: hexokinase inhibition by 2,3-diphosphogly- cerate and interaction with ATP and Mg2+.
    Brewer GJ
    Biochim Biophys Acta; 1969 Nov; 192(2):157-61. PubMed ID: 5370013
    [No Abstract]   [Full Text] [Related]  

  • 20. A modelling study of feedforward activation in human erythrocyte glycolysis.
    Bali M; Thomas SR
    C R Acad Sci III; 2001 Mar; 324(3):185-99. PubMed ID: 11291305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.