BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 9128894)

  • 1. Thyroid dose reconstruction for the population of Belarus after the Chernobyl accident.
    Drozdovitch VV; Goulko GM; Minenko VF; Paretzke HG; Voigt G; Kenigsberg YaI
    Radiat Environ Biophys; 1997 Feb; 36(1):17-23. PubMed ID: 9128894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using total beta-activity measurements in milk to derive thyroid doses from Chernobyl fallout.
    Drozdovitch V; Germenchuk M; Bouville A
    Radiat Prot Dosimetry; 2006; 118(4):402-11. PubMed ID: 16436522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chernobyl accident: reconstruction of thyroid dose for inhabitants of the Republic of Belarus.
    Gavrilin YI; Khrouch VT; Shinkarev SM; Krysenko NA; Skryabin AM; Bouville A; Anspaugh LR
    Health Phys; 1999 Feb; 76(2):105-19. PubMed ID: 9929121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A radioecological model for thyroid dose reconstruction of the Belarus population following the Chernobyl accident.
    Kruk JE; Pröhl G; Kenigsberg JI
    Radiat Environ Biophys; 2004 Jul; 43(2):101-10. PubMed ID: 15221314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing prediction capabilities of an 131I terrestrial transport model by using measurements collected at the Hanford nuclear facility.
    Apostoaei AI
    Health Phys; 2005 May; 88(5):439-58. PubMed ID: 15824593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Reconstruction of I-131 in milk and exposure doses to the thyroid gland of cattle after the Chernobyl AES].
    Spirin EV
    Radiats Biol Radioecol; 2002; 42(5):564-8. PubMed ID: 12449827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of 131I deposition density in regions of Belarus with estimation of thyroid doses from inhalation of 131I.
    Knatko VA; Dorozhok IN
    Radiat Prot Dosimetry; 2001; 93(1):43-8. PubMed ID: 11548325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of
    Minenko V; Kukhta T; Trofimik S; Zhukova O; Podgaiskaya M; Viarenich K; Bouville A; Drozdovitch V
    J Environ Radioact; 2022 Sep; 250():106928. PubMed ID: 35660203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating individual thyroid doses for a case-control study of childhood thyroid cancer in Bryansk Oblast, Russia.
    Stepanenko VF; Voillequé PG; Gavrilin YI; Khrouch VT; Shinkarev SM; Orlov MY; Kondrashov AE; Petin DV; Iaskova EK; Tsyb AF
    Radiat Prot Dosimetry; 2004; 108(2):143-60. PubMed ID: 14978294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrospective evaluation of 131I deposition density and thyroid dose in Poland after the Chernobyl accident.
    Pietrzak-Flis Z; Krajewski P; Radwan I; Muramatsu Y
    Health Phys; 2003 Jun; 84(6):698-708. PubMed ID: 12822579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual thyroid dose estimation for a case-control study of Chernobyl-related thyroid cancer among children of Belarus-part I: 131I, short-lived radioiodines (132I, 133I, 135I), and short-lived radiotelluriums (131MTe and 132Te).
    Gavrilin Y; Khrouch V; Shinkarev S; Drozdovitch V; Minenko V; Shemiakina E; Ulanovsky A; Bouville A; Anspaugh L; Voillequé P; Luckyanov N
    Health Phys; 2004 Jun; 86(6):565-85. PubMed ID: 15167120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of 129I and 137Cs in soils for the estimation of 131I deposition in Belarus as a result of the Chernobyl accident.
    Mironov V; Kudrjashov V; Yiou F; Raisbeck GM
    J Environ Radioact; 2002; 59(3):293-307. PubMed ID: 11954719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of radionuclides distributed in the whole body on the thyroid dose estimates obtained from direct thyroid measurements made in Belarus after the Chernobyl accident.
    Ulanovsky A; Drozdovitch V; Bouville A
    Radiat Prot Dosimetry; 2004; 112(3):405-18. PubMed ID: 15494363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The feasibility of using 129I to reconstruct 131I deposition from the Chernobyl reactor accident.
    Straume T; Marchetti AA; Anspaugh LR; Khrouch VT; Gavrilin YuI ; Shinkarev SM; Drozdovitch VV; Ulanovsky AV; Korneev SV; Brekeshev MK; Leonov ES; Voigt G; Panchenko SV; Minenko VF
    Health Phys; 1996 Nov; 71(5):733-40. PubMed ID: 8887520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation Exposure to the Thyroid After the Chernobyl Accident.
    Drozdovitch V
    Front Endocrinol (Lausanne); 2020; 11():569041. PubMed ID: 33469445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thyroid dose and thyroid cancer incidence after the Chernobyl accident: assessments for the Zhytomyr region (Ukraine).
    Goulko GM; Chepurny NI; Jacob P; Kairo IA; Likhtarev IA; Pröhl G; Sobolev BG
    Radiat Environ Biophys; 1998 Feb; 36(4):261-73. PubMed ID: 9523343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-Chornobyl thyroid cancers in Ukraine. Report 1: estimation of thyroid doses.
    Likhtarov I; Kovgan L; Vavilov S; Chepurny M; Bouville A; Luckyanov N; Jacob P; Voillequé P; Voigt G
    Radiat Res; 2005 Feb; 163(2):125-36. PubMed ID: 15658887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Credibility of Chernobyl thyroid doses exceeding 10 Gy based on in-vivo measurements of 131I in Belarus.
    Shinkarev SM; Voillequé PG; Gavrilin YI; Khrouch VT; Bouville A; Hoshi M; Meckbach R; Minenko VF; Ulanovsky AV; Luckyanov N
    Health Phys; 2008 Feb; 94(2):180-7. PubMed ID: 18188052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainties in thyroid dose reconstruction after Chernobyl.
    Likhtarev I; Minenko V; Khrouch V; Bouville A
    Radiat Prot Dosimetry; 2003; 105(1-4):601-8. PubMed ID: 14527034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimates of thyroid equivalent dose in Lithuania following the Chernobyl accident.
    Nedveckaite T; Filistowicz W
    Health Phys; 1995 Aug; 69(2):265-8. PubMed ID: 7622374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.