These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 9129517)
1. Effect of prosthetic mass on swing phase work during above-knee amputee ambulation. Gitter A; Czerniecki J; Meinders M Am J Phys Med Rehabil; 1997; 76(2):114-21. PubMed ID: 9129517 [TBL] [Abstract][Full Text] [Related]
2. Energy transfer mechanisms as a compensatory strategy in below knee amputee runners. Czerniecki JM; Gitter AJ; Beck JC J Biomech; 1996 Jun; 29(6):717-22. PubMed ID: 9147968 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the swing phase dynamics and muscular effort of the above-knee amputee for varying prosthetic shank loads. Hale SA Prosthet Orthot Int; 1990 Dec; 14(3):125-35. PubMed ID: 2095530 [TBL] [Abstract][Full Text] [Related]
4. Insights into amputee running. A muscle work analysis. Czerniecki JM; Gitter A Am J Phys Med Rehabil; 1992 Aug; 71(4):209-18. PubMed ID: 1642820 [TBL] [Abstract][Full Text] [Related]
5. Mechanical work adaptations of above-knee amputee ambulation. Seroussi RE; Gitter A; Czerniecki JM; Weaver K Arch Phys Med Rehabil; 1996 Nov; 77(11):1209-14. PubMed ID: 8931539 [TBL] [Abstract][Full Text] [Related]
6. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking. Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945 [TBL] [Abstract][Full Text] [Related]
7. Mechanical energetic contributions from individual muscles and elastic prosthetic feet during symmetric unilateral transtibial amputee walking: a theoretical study. Zmitrewicz RJ; Neptune RR; Sasaki K J Biomech; 2007; 40(8):1824-31. PubMed ID: 17045595 [TBL] [Abstract][Full Text] [Related]
8. Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off. Weinert-Aplin RA; Howard D; Twiste M; Jarvis HL; Bennett AN; Baker RJ Med Eng Phys; 2017 Jan; 39():73-82. PubMed ID: 27836575 [TBL] [Abstract][Full Text] [Related]
9. Cross-Slope and Level Walking Strategies During Swing in Individuals With Lower Limb Amputation. Villa C; Loiret I; Langlois K; Bonnet X; Lavaste F; Fodé P; Pillet H Arch Phys Med Rehabil; 2017 Jun; 98(6):1149-1157. PubMed ID: 27832952 [TBL] [Abstract][Full Text] [Related]
10. Transfemoral amputee recovery strategies following trips to their sound and prosthesis sides throughout swing phase. Shirota C; Simon AM; Kuiken TA J Neuroeng Rehabil; 2015 Sep; 12():79. PubMed ID: 26353775 [TBL] [Abstract][Full Text] [Related]
11. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
12. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms. Morgenroth DC; Roland M; Pruziner AL; Czerniecki JM Clin Biomech (Bristol); 2018 Jun; 55():65-72. PubMed ID: 29698851 [TBL] [Abstract][Full Text] [Related]
13. Altered kinetic strategy for the control of swing limb elevation over obstacles in unilateral below-knee amputee gait. Hill SW; Patla AE; Ishac MG; Adkin AL; Supan TJ; Barth DG J Biomech; 1999 May; 32(5):545-9. PubMed ID: 10327009 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical responses of young adults with unilateral transfemoral amputation using two types of mechanical stance control prosthetic knee joints. Andrysek J; García D; Rozbaczylo C; Alvarez-Mitchell C; Valdebenito R; Rotter K; Wright FV Prosthet Orthot Int; 2020 Oct; 44(5):314-322. PubMed ID: 32389076 [TBL] [Abstract][Full Text] [Related]
15. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait. Seyedali M; Czerniecki JM; Morgenroth DC; Hahn ME J Neuroeng Rehabil; 2012 May; 9():29. PubMed ID: 22640660 [TBL] [Abstract][Full Text] [Related]
16. A characterisation of established unilateral transfemoral amputee gait using 3D kinematics, kinetics and oxygen consumption measures. Carse B; Scott H; Brady L; Colvin J Gait Posture; 2020 Jan; 75():98-104. PubMed ID: 31645007 [TBL] [Abstract][Full Text] [Related]
17. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Fey NP; Klute GK; Neptune RR Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999 [TBL] [Abstract][Full Text] [Related]
18. Effect of alterations in prosthetic shank mass on the metabolic costs of ambulation in above-knee amputees. Czerniecki JM; Gitter A; Weaver K Am J Phys Med Rehabil; 1994; 73(5):348-52. PubMed ID: 7917165 [TBL] [Abstract][Full Text] [Related]
19. Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet. Czerniecki JM; Gitter A; Munro C J Biomech; 1991; 24(1):63-75. PubMed ID: 2026634 [TBL] [Abstract][Full Text] [Related]
20. Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study. Fey NP; Klute GK; Neptune RR J Biomech Eng; 2012 Nov; 134(11):111005. PubMed ID: 23387787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]