These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 9129618)

  • 1. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow waveform effects on end-to-side anastomotic flow patterns.
    Ethier CR; Steinman DA; Zhang X; Karpik SR; Ojha M
    J Biomech; 1998 Jul; 31(7):609-17. PubMed ID: 9796683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometric design improvements for femoral graft-artery junctions mitigating restenosis.
    Lei M; Kleinstreuer C; Archie JP
    J Biomech; 1996 Dec; 29(12):1605-14. PubMed ID: 8945659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow input waveform effects on the temporal and spatial wall shear stress gradients in a femoral graft-artery connector.
    Kleinstreuer C; Lei M; Archie JP
    J Biomech Eng; 1996 Nov; 118(4):506-10. PubMed ID: 8950654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses.
    Perktold K; Leuprecht A; Prosi M; Berk T; Czerny M; Trubel W; Schima H
    Ann Biomed Eng; 2002 Apr; 30(4):447-60. PubMed ID: 12085997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study.
    Kute SM; Vorp DA
    J Biomech Eng; 2001 Jun; 123(3):277-83. PubMed ID: 11476372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational investigations of a new prosthetic femoral-popliteal bypass graft design.
    O'Brien TP; Grace P; Walsh M; Burke P; McGloughlin T
    J Vasc Surg; 2005 Dec; 42(6):1169-75. PubMed ID: 16376210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimisation of the wall shear stress gradients in bypass grafts anastomoses using meshless CFD and genetic algorithms optimisation.
    El Zahab Z; Divo E; Kassab A
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):35-47. PubMed ID: 20166238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis.
    Steinman DA; Ethier CR
    J Biomech Eng; 1994 Aug; 116(3):294-301. PubMed ID: 7799630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis of effects of external carotid artery flow and occlusion on adverse carotid bifurcation hemodynamics.
    Hyun S; Kleinstreuer C; Archie JP
    J Vasc Surg; 2003 Jun; 37(6):1248-54. PubMed ID: 12764272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study.
    Keynton RS; Evancho MM; Sims RL; Rodway NV; Gobin A; Rittgers SE
    J Biomech Eng; 2001 Oct; 123(5):464-73. PubMed ID: 11601732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational and experimental simulations of the haemodynamics at cuffed arterial bypass graft anastomoses.
    Cole JS; Wijesinghe LD; Watterson JK; Scott DJ
    Proc Inst Mech Eng H; 2002; 216(2):135-43. PubMed ID: 12022420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow dynamics across end-to-end vascular bypass graft anastomoses.
    Kim YH; Chandran KB; Bower TJ; Corson JD
    Ann Biomed Eng; 1993; 21(4):311-20. PubMed ID: 8214816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic simulations and computer-aided designs of graft-artery junctions.
    Lei M; Kleinstreuer C; Archie JP
    J Biomech Eng; 1997 Aug; 119(3):343-8. PubMed ID: 9285348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational fluid dynamics and vascular access.
    Krueger U; Zanow J; Scholz H
    Artif Organs; 2002 Jul; 26(7):571-5. PubMed ID: 12081514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts.
    Leuprecht A; Perktold K; Prosi M; Berk T; Trubel W; Schima H
    J Biomech; 2002 Feb; 35(2):225-36. PubMed ID: 11784541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.