These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 9129803)

  • 1. Control of actin moving trajectory by patterned poly(methylmethacrylate) tracks.
    Suzuki H; Yamada A; Oiwa K; Nakayama H; Mashiko S
    Biophys J; 1997 May; 72(5):1997-2001. PubMed ID: 9129803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acting on actin: the electric motility assay.
    Riveline D; Ott A; Jülicher F; Winkelmann DA; Cardoso O; Lacapère JJ; Magnúsdóttir S; Viovy JL; Gorre-Talini L; Prost J
    Eur Biophys J; 1998; 27(4):403-8. PubMed ID: 9691469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actin motion on microlithographically functionalized myosin surfaces and tracks.
    Nicolau DV; Suzuki H; Mashiko S; Taguchi T; Yoshikawa S
    Biophys J; 1999 Aug; 77(2):1126-34. PubMed ID: 10423457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movement of actin away from the center of reconstituted rabbit myosin filament is slower than in the opposite direction.
    Yamada A; Wakabayashi T
    Biophys J; 1993 Feb; 64(2):565-9. PubMed ID: 8457681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real time imaging of single fluorophores on moving actin with an epifluorescence microscope.
    Sase I; Miyata H; Corrie JE; Craik JS; Kinosita K
    Biophys J; 1995 Aug; 69(2):323-8. PubMed ID: 8527645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion determination in actin filament fluorescence images with a spatio-temporal orientation analysis method.
    Uttenweiler D; Veigel C; Steubing R; Götz C; Mann S; Haussecker H; Jähne B; Fink RH
    Biophys J; 2000 May; 78(5):2709-15. PubMed ID: 10777767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bidirectional movement of actin filaments along tracks of myosin heads.
    Toyoshima YY; Toyoshima C; Spudich JA
    Nature; 1989 Sep; 341(6238):154-6. PubMed ID: 2674720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motility assays using myosin attached to surfaces through specific binding to monoclonal antibodies.
    Winkelmann DA; Bourdieu L; Kinose F; Libchaber A
    Biophys J; 1995 Apr; 68(4 Suppl):72S. PubMed ID: 7787107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of bead-tailed actin filaments: estimation of the torque produced by the sliding force in an in vitro motility assay.
    Suzuki N; Miyata H; Ishiwata S; Kinosita K
    Biophys J; 1996 Jan; 70(1):401-8. PubMed ID: 8770216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity of movement of actin filaments in in vitro motility assay. Measured by fluorescence correlation spectroscopy.
    Borejdo J; Burlacu S
    Biophys J; 1992 May; 61(5):1267-80. PubMed ID: 1534696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subdiffraction-resolution fluorescence microscopy of myosin-actin motility.
    Endesfelder U; van de Linde S; Wolter S; Sauer M; Heilemann M
    Chemphyschem; 2010 Mar; 11(4):836-40. PubMed ID: 20186905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actomyosin motility on nanostructured surfaces.
    Bunk R; Klinth J; Montelius L; Nicholls IA; Omling P; Tågerud S; Månsson A
    Biochem Biophys Res Commun; 2003 Feb; 301(3):783-8. PubMed ID: 12565849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel mode of cooperative binding between myosin and Mg2+ -actin filaments in the presence of low concentrations of ATP.
    Tokuraku K; Kurogi R; Toya R; Uyeda TQ
    J Mol Biol; 2009 Feb; 386(1):149-62. PubMed ID: 19100745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of urea and guanidine hydrochloride on the sliding movement of actin filaments with ATP hydrolysis by myosin molecules.
    Kumemoto R; Hosogoe Y; Nomura N; Hatori K
    J Biochem; 2011 Jun; 149(6):713-20. PubMed ID: 21324985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Surface Silanization for Actin-Myosin Based Nanodevices and Biocompatibility of New Polymer Resists.
    Lindberg FW; Norrby M; Rahman MA; Salhotra A; Takatsuki H; Jeppesen S; Linke H; Månsson A
    Langmuir; 2018 Jul; 34(30):8777-8784. PubMed ID: 29969272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface hydrophobicity modulates the operation of actomyosin-based dynamic nanodevices.
    Nicolau DV; Solana G; Kekic M; Fulga F; Mahanivong C; Wright J; Ivanova EP; dos Remedios CG
    Langmuir; 2007 Oct; 23(21):10846-54. PubMed ID: 17854206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin filament guidance on a chip: toward high-throughput assays and lab-on-a-chip applications.
    Sundberg M; Bunk R; Albet-Torres N; Kvennefors A; Persson F; Montelius L; Nicholls IA; Ghatnekar-Nilsson S; Omling P; Tågerud S; Månsson A
    Langmuir; 2006 Aug; 22(17):7286-95. PubMed ID: 16893228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy of the myosin molecule.
    Hallett P; Offer G; Miles MJ
    Biophys J; 1995 Apr; 68(4):1604-6. PubMed ID: 7787046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: evidence that tropomyosin and troponin increase force in single thin filaments.
    Bing W; Knott A; Marston SB
    Biochem J; 2000 Sep; 350 Pt 3(Pt 3):693-9. PubMed ID: 10970781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective attachment of F-actin with controlled length for developing an intelligent nanodevice.
    Wei MY; Leon LJ; Lee Y; Parks D; Carroll L; Famouri P
    J Colloid Interface Sci; 2011 Apr; 356(1):182-9. PubMed ID: 21269638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.