These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9129833)

  • 1. Volume and enthalpy changes after photoexcitation of bovine rhodopsin: laser-induced optoacoustic studies.
    Strassburger JM; Gärtner W; Braslavsky SE
    Biophys J; 1997 May; 72(5):2294-303. PubMed ID: 9129833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved spectroscopy of the early photolysis intermediates of rhodopsin Schiff base counterion mutants.
    Jäger S; Lewis JW; Zvyaga TA; Szundi I; Sakmar TP; Kliger DS
    Biochemistry; 1997 Feb; 36(8):1999-2009. PubMed ID: 9047297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of early photolysis intermediates of rhodopsin are affected by glycine 121 and phenylalanine 261.
    Jäger S; Han M; Lewis JW; Szundi I; Sakmar TP; Kliger DS
    Biochemistry; 1997 Sep; 36(39):11804-10. PubMed ID: 9305971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early photolysis intermediates of the artificial visual pigment 13-demethylrhodopsin.
    Einterz CM; Hug SJ; Lewis JW; Kliger DS
    Biochemistry; 1990 Feb; 29(6):1485-91. PubMed ID: 2334709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of octanol on the late photointermediates of rhodopsin.
    Mah TL; Szundi I; Lewis JW; Jäger S; Kliger DS
    Photochem Photobiol; 1998 Nov; 68(5):762-70. PubMed ID: 9825706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspartate 75 mutation in sensory rhodopsin II from Natronobacterium pharaonis does not influence the production of the K-like intermediate, but strongly affects its relaxation pathway.
    Losi A; Wegener AA; Engelhard M; Gärtner W; Braslavsky SE
    Biophys J; 2000 May; 78(5):2581-9. PubMed ID: 10777754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early photolysis intermediates of gecko and bovine artificial visual pigments.
    Lewis JW; Liang J; Ebrey TG; Sheves M; Livnah N; Kuwata O; Jäger S; Kliger DS
    Biochemistry; 1997 Nov; 36(47):14593-600. PubMed ID: 9398178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition dipole orientations in the early photolysis intermediates of rhodopsin.
    Lewis JW; Einterz CM; Hug SJ; Kliger DS
    Biophys J; 1989 Dec; 56(6):1101-11. PubMed ID: 2611326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosecond photolysis of rhodopsin: evidence for a new, blue-shifted intermediate.
    Hug SJ; Lewis JW; Einterz CM; Thorgeirsson TE; Kliger DS
    Biochemistry; 1990 Feb; 29(6):1475-85. PubMed ID: 2334708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics and volume changes of the intermediates in the photolysis of octopus rhodopsin at a physiological temperature.
    Nishioku Y; Nakagawa M; Tsuda M; Terazima M
    Biophys J; 2002 Aug; 83(2):1136-46. PubMed ID: 12124293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steric barrier to bathorhodopsin decay in 5-demethyl and mesityl analogues of rhodopsin.
    Lewis JW; Fan GB; Sheves M; Szundi I; Kliger DS
    J Am Chem Soc; 2001 Oct; 123(41):10024-9. PubMed ID: 11592880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lumi I --> Lumi II: the last detergent independent process in rhodopsin photoexcitationt.
    Epps J; Lewis JW; Szundi I; Kliger DS
    Photochem Photobiol; 2006; 82(6):1436-41. PubMed ID: 16553464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in the photobleaching process between 7-cis- and 11-cis-rhodopsins: a unique interaction change between the chromophore and the protein during the lumi-meta I transition.
    Shichida Y; Kandori H; Okada T; Yoshizawa T; Nakashima N; Yoshihara K
    Biochemistry; 1991 Jun; 30(24):5918-26. PubMed ID: 1828372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature trapping of early photointermediates of alpha-isorhodopsin.
    Mah TL; Lewis JW; Sheves M; Ottolenghi M; Kliger DS
    Photochem Photobiol; 1995 Aug; 62(2):356-60. PubMed ID: 7480145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic study of the batho-to-lumi transition during the photobleaching of rhodopsin using ring-modified retinal analogues.
    Okada T; Kandori H; Shichida Y; Yoshizawa T; Denny M; Zhang BW; Asato AE; Liu RS
    Biochemistry; 1991 May; 30(19):4796-802. PubMed ID: 2029520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Temperature Trapping of Photointermediates of the Rhodopsin E181Q Mutant.
    Sandberg MN; Greco JA; Wagner NL; Amora TL; Ramos LA; Chen MH; Knox BE; Birge RR
    SOJ Biochem; 2014; 1(1):. PubMed ID: 25621306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved absorption and photothermal measurements with recombinant sensory rhodopsin II from Natronobacterium pharaonis.
    Losi A; Wegener AA; Engelhard M; Gärtner W; Braslavsky SE
    Biophys J; 1999 Dec; 77(6):3277-86. PubMed ID: 10585949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photolysis intermediates of human rhodopsin.
    Lewis JW; van Kuijk FJ; Thorgeirsson TE; Kliger DS
    Biochemistry; 1991 Dec; 30(48):11372-6. PubMed ID: 1742277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes in lumirhodopsin and metarhodopsin I studied by their photoreactions at 77 K.
    Furutani Y; Kandori H; Shichida Y
    Biochemistry; 2003 Jul; 42(28):8494-500. PubMed ID: 12859195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational spectrum of the lumi intermediate in the room temperature rhodopsin photo-reaction.
    Ujj L; Jäger F; Atkinson GH
    Biophys J; 1998 Mar; 74(3):1492-501. PubMed ID: 9512045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.