These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9129835)

  • 1. Light-induced protein conformational changes in the photolysis of octopus rhodopsin.
    Nakagawa M; Kikkawa S; Iwasa T; Tsuda M
    Biophys J; 1997 May; 72(5):2320-8. PubMed ID: 9129835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spectrally silent transformation in the photolysis of octopus rhodopsin: a protein conformational change without any accompanying change of the chromophore's absorption.
    Nishioku Y; Nakagawa M; Tsuda M; Terazima M
    Biophys J; 2001 Jun; 80(6):2922-7. PubMed ID: 11371464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient spectra of intermediates in the photolytic sequence of octopus rhodopsin.
    Tsuda M
    Biochim Biophys Acta; 1979 Mar; 545(3):537-46. PubMed ID: 34434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared studies of octopus rhodopsin. Existence of a long-lived intermediate and the states of the carboxylic group of Asp-81 in rhodopsin and its photoproducts.
    Masuda S; Morita EH; Tasumi M; Iwasa T; Tsuda M
    FEBS Lett; 1993 Feb; 317(3):223-7. PubMed ID: 8425608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics and volume changes of the intermediates in the photolysis of octopus rhodopsin at a physiological temperature.
    Nishioku Y; Nakagawa M; Tsuda M; Terazima M
    Biophys J; 2002 Aug; 83(2):1136-46. PubMed ID: 12124293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular dichroism of cephalopod rhodopsin and its intermediates in the bleaching and photoregeneration process.
    Azuma K; Azuma M; Suzuki T
    Biochim Biophys Acta; 1975 Jun; 393(2):520-30. PubMed ID: 238616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two intermediates appear on the lumirhodopsin time scale after rhodopsin photoexcitation.
    Szundi I; Lewis JW; Kliger DS
    Biochemistry; 2003 May; 42(17):5091-8. PubMed ID: 12718552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet resonance Raman evidence for the absence of tyrosinate in octopus rhodopsin and the participation of Trp residues in the transition to acid metarhodopsin.
    Hashimoto S; Takeuchi H; Nakagawa M; Tsuda M
    FEBS Lett; 1996 Dec; 398(2-3):239-42. PubMed ID: 8977115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin.
    Nishimura S; Kandori H; Nakagawa M; Tsuda M; Maeda A
    Biochemistry; 1997 Jan; 36(4):864-70. PubMed ID: 9020785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of temperature on rhodopsin photointermediates from lumirhodopsin to metarhodopsin II.
    Thorgeirsson TE; Lewis JW; Wallace-Williams SE; Kliger DS
    Biochemistry; 1993 Dec; 32(50):13861-72. PubMed ID: 8268161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved photointermediate changes in rhodopsin glutamic acid 181 mutants.
    Lewis JW; Szundi I; Kazmi MA; Sakmar TP; Kliger DS
    Biochemistry; 2004 Oct; 43(39):12614-21. PubMed ID: 15449951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state.
    Lin SW; Sakmar TP
    Biochemistry; 1996 Aug; 35(34):11149-59. PubMed ID: 8780519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water structural changes in lumirhodopsin, metarhodopsin I, and metarhodopsin II upon photolysis of bovine rhodopsin: analysis by Fourier transform infrared spectroscopy.
    Maeda A; Ohkita YJ; Sasaki J; Shichida Y; Yoshizawa T
    Biochemistry; 1993 Nov; 32(45):12033-8. PubMed ID: 8218280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photolysis of rhodopsin results in deprotonation of its retinal Schiff's base prior to formation of metarhodopsin II.
    Thorgeirsson TE; Lewis JW; Wallace-Williams SE; Kliger DS
    Photochem Photobiol; 1992 Dec; 56(6):1135-44. PubMed ID: 1337214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel photointermediate of octopus rhodopsin activates its G-protein.
    Nakagawa M; Kikkawa S; Tominaga K; Tsugi N; Tsuda M
    FEBS Lett; 1998 Oct; 436(2):259-62. PubMed ID: 9781691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absorbance changes by aromatic amino acid side chains in early rhodopsin photointermediates.
    Lewis JW; Jäger S; Kliger DS
    Photochem Photobiol; 1997 Dec; 66(6):741-6. PubMed ID: 9421960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoreverse reaction dynamics of octopus rhodopsin.
    Inoue K; Tsuda M; Terazima M
    Biophys J; 2007 May; 92(10):3643-51. PubMed ID: 17325000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet resonance Raman examination of the light-induced protein structural changes in rhodopsin activation.
    Kochendoerfer GG; Kaminaka S; Mathies RA
    Biochemistry; 1997 Oct; 36(43):13153-9. PubMed ID: 9376376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Peculiarities of rhodopsin photoconversion at the early stages of photolysis].
    Fel'dman TB; Fedorovich IB; Ostrovskiĭ MA
    Ross Fiziol Zh Im I M Sechenova; 2003 Feb; 89(2):113-22. PubMed ID: 12710180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy.
    Hoersch D; Otto H; Wallat I; Heyn MP
    Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.