These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Vibrational spectrum of the lumi intermediate in the room temperature rhodopsin photo-reaction. Ujj L; Jäger F; Atkinson GH Biophys J; 1998 Mar; 74(3):1492-501. PubMed ID: 9512045 [TBL] [Abstract][Full Text] [Related]
3. Picosecond time-resolved absorption and fluorescence dynamics in the artificial bacteriorhodopsin pigment BR6.11. Brack TL; Delaney JK; Atkinson GH; Albeck A; Sheves M; Ottolenghi M Biophys J; 1993 Aug; 65(2):964-72. PubMed ID: 8218919 [TBL] [Abstract][Full Text] [Related]
4. Picosecond time-resolved ultraviolet resonance Raman spectroscopy of bacteriorhodopsin: primary protein response to the photoisomerization of retinal. Mizuno M; Shibata M; Yamada J; Kandori H; Mizutani Y J Phys Chem B; 2009 Sep; 113(35):12121-8. PubMed ID: 19678662 [TBL] [Abstract][Full Text] [Related]
5. Nanosecond time-resolved infrared spectroscopy distinguishes two K species in the bacteriorhodopsin photocycle. Sasaki J; Yuzawa T; Kandori H; Maeda A; Hamaguchi H Biophys J; 1995 May; 68(5):2073-80. PubMed ID: 7612850 [TBL] [Abstract][Full Text] [Related]
6. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219 [TBL] [Abstract][Full Text] [Related]
7. Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy. Smith SO; Lugtenburg J; Mathies RA J Membr Biol; 1985; 85(2):95-109. PubMed ID: 4009698 [TBL] [Abstract][Full Text] [Related]
8. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy. Morgan JE; Vakkasoglu AS; Lugtenburg J; Gennis RB; Maeda A Biochemistry; 2008 Nov; 47(44):11598-605. PubMed ID: 18837559 [TBL] [Abstract][Full Text] [Related]
9. Chromophore structure in bacteriorhodopsin's N intermediate: implications for the proton-pumping mechanism. Fodor SPA; Ames JB; Gebhard R; van den Berg EMM; Stoeckenius W; Lugtenburg J; Mathies RA Biochemistry; 1988 Sep; 27(18):7097-101. PubMed ID: 2848578 [TBL] [Abstract][Full Text] [Related]
10. Time-resolved ultraviolet resonance Raman studies of protein structure: application to bacteriorhodopsin. Ames JB; Ros M; Raap J; Lugtenburg J; Mathies RA Biochemistry; 1992 Jun; 31(23):5328-34. PubMed ID: 1606157 [TBL] [Abstract][Full Text] [Related]
11. Water structural changes in the L and M photocycle intermediates of bacteriorhodopsin as revealed by time-resolved step-scan Fourier transform infrared (FTIR) spectroscopy. Morgan JE; Vakkasoglu AS; Gennis RB; Maeda A Biochemistry; 2007 Mar; 46(10):2787-96. PubMed ID: 17300175 [TBL] [Abstract][Full Text] [Related]
12. Picosecond time-resolved fluorescence spectroscopy of K-590 in the bacteriorhodopsin photocycle. Atkinson GH; Blanchard D; Lemaire H; Brack TL; Hayashi H Biophys J; 1989 Feb; 55(2):263-74. PubMed ID: 2713439 [TBL] [Abstract][Full Text] [Related]
13. A resonance Raman study of the C=N configurations of octopus rhodopsin, bathorhodopsin, and isorhodopsin. Huang L; Deng H; Weng G; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH Biochemistry; 1996 Jul; 35(26):8504-10. PubMed ID: 8679611 [TBL] [Abstract][Full Text] [Related]
14. Time-resolved infrared spectral analysis of the KL-to-L conversion in the photocycle of bacteriorhodopsin. Sasaki J; Maeda A; Kato C; Hamaguchi H Biochemistry; 1993 Jan; 32(3):867-71. PubMed ID: 8422391 [TBL] [Abstract][Full Text] [Related]
15. Time-resolved absorption and fluorescence from the bacteriorhodopsin photocycle in the nanosecond time regime. Delaney JK; Brack TL; Atkinson GH Biophys J; 1993 May; 64(5):1512-9. PubMed ID: 19431895 [TBL] [Abstract][Full Text] [Related]
16. Structure of the retinal chromophore in sensory rhodopsin I from resonance Raman spectroscopy. Fodor SP; Gebhard R; Lugtenburg J; Bogomolni RA; Mathies RA J Biol Chem; 1989 Nov; 264(31):18280-3. PubMed ID: 2808377 [TBL] [Abstract][Full Text] [Related]
17. A time-resolved spectral study of the K and KL intermediates of bacteriorhodopsin. Milder SJ; Kliger DS Biophys J; 1988 Mar; 53(3):465-8. PubMed ID: 3349137 [TBL] [Abstract][Full Text] [Related]
18. Assignment of the hydrogen-out-of-plane and -in-plane vibrations of the retinal chromophore in the K intermediate of pharaonis phoborhodopsin. Furutani Y; Sudo Y; Wada A; Ito M; Shimono K; Kamo N; Kandori H Biochemistry; 2006 Oct; 45(39):11836-43. PubMed ID: 17002284 [TBL] [Abstract][Full Text] [Related]
19. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618 [TBL] [Abstract][Full Text] [Related]
20. Bacteriorhodopsin's L550 intermediate contains a C14-C15 s-trans-retinal chromophore. Fodor SP; Pollard WT; Gebhard R; van den Berg EM; Lugtenburg J; Mathies RA Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2156-60. PubMed ID: 3353373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]