These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Microdamage in bone: implications for fracture, repair, remodeling, and adaptation. Donahue SW; Galley SA Crit Rev Biomed Eng; 2006; 34(3):215-71. PubMed ID: 16930125 [TBL] [Abstract][Full Text] [Related]
24. Microdamage and bone mechanobiology. Lee TC; O'Brien FJ; Gunnlaugsson T; Parkesh R; Taylor D Technol Health Care; 2006; 14(4-5):359-65. PubMed ID: 17065757 [TBL] [Abstract][Full Text] [Related]
25. A fatigue damage model for the cement-bone interface. Kim DG; Miller MA; Mann KA J Biomech; 2004 Oct; 37(10):1505-12. PubMed ID: 15336925 [TBL] [Abstract][Full Text] [Related]
26. Fatigue of bone and bones: an analysis based on stressed volume. Taylor D J Orthop Res; 1998 Mar; 16(2):163-9. PubMed ID: 9621890 [TBL] [Abstract][Full Text] [Related]
27. Modeling fatigue damage evolution in bone. Pidaparti RM; Wang QY; Burr DB Biomed Mater Eng; 2001; 11(2):69-78. PubMed ID: 11352114 [TBL] [Abstract][Full Text] [Related]
28. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone. Wang X; Guyette J; Liu X; Roeder RK; Niebur GL Eur J Morphol; 2005; 42(1-2):61-70. PubMed ID: 16123025 [TBL] [Abstract][Full Text] [Related]
29. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone. Fletcher L; Codrington J; Parkinson I J Mater Sci Mater Med; 2014 Jul; 25(7):1661-70. PubMed ID: 24715332 [TBL] [Abstract][Full Text] [Related]
30. [Fatigue damage and repair in bone]. Zhang C; Wu D; Guo Y; Guo T; Zhu X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):180-6. PubMed ID: 12744194 [TBL] [Abstract][Full Text] [Related]
31. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei. Skedros JG; Sorenson SM; Takano Y; Turner CH Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155 [TBL] [Abstract][Full Text] [Related]
33. [Prospect of the foveola formation in the bovine trabecular bone under fatigue process]. Ye J; Cai H; Xu K; Zhu R; Zhang M; Tang N Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Feb; 21(1):57-61. PubMed ID: 15022464 [TBL] [Abstract][Full Text] [Related]
34. The behaviour of fatigue-induced microdamage in compact bone samples from control and ovariectomised sheep. Kennedy OD; Brennan O; Mauer P; O'Brien FJ; Rackard SM; Taylor D; Lee TC Stud Health Technol Inform; 2008; 133():148-55. PubMed ID: 18376023 [TBL] [Abstract][Full Text] [Related]
35. In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix. Zioupos P Eur J Morphol; 2005; 42(1-2):31-41. PubMed ID: 16123022 [TBL] [Abstract][Full Text] [Related]
36. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces. Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609 [TBL] [Abstract][Full Text] [Related]
37. Augmentation of acrylic bone cement with multiwall carbon nanotubes. Marrs B; Andrews R; Rantell T; Pienkowski D J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130 [TBL] [Abstract][Full Text] [Related]
38. [Manufacture and application of SL-2000 bone fatigue damage testing device]. Dai R; Liao E; Wu X; Yang C; Meng L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):192-5. PubMed ID: 16532839 [TBL] [Abstract][Full Text] [Related]
39. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue. Kosmopoulos V; Schizas C; Keller TS J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887 [TBL] [Abstract][Full Text] [Related]
40. Bisphosphonate effects on bone turnover, microdamage, and mechanical properties: what we think we know and what we know that we don't know. Allen MR; Burr DB Bone; 2011 Jul; 49(1):56-65. PubMed ID: 20955825 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]