These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 912990)

  • 41. The effects of damage and microcracking on the impact strength of bone.
    Reilly GC; Currey JD
    J Biomech; 2000 Mar; 33(3):337-43. PubMed ID: 10673117
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization.
    Turnbull TL; Baumann AP; Roeder RK
    J Biomech; 2014 Sep; 47(12):3135-42. PubMed ID: 25065731
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bone creep-fatigue damage accumulation.
    Caler WE; Carter DR
    J Biomech; 1989; 22(6-7):625-35. PubMed ID: 2808445
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Compressive fatigue behavior of bovine trabecular bone.
    Michel MC; Guo XD; Gibson LJ; McMahon TA; Hayes WC
    J Biomech; 1993; 26(4-5):453-63. PubMed ID: 8478349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance.
    Lambers FM; Bouman AR; Rimnac CM; Hernandez CJ
    PLoS One; 2013; 8(12):e83662. PubMed ID: 24386247
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bone dynamics: stress, strain and fracture.
    Martin AD; McCulloch RG
    J Sports Sci; 1987; 5(2):155-63. PubMed ID: 3326949
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of damage accumulation on the tensile strength and toughness of compact bovine bone.
    Zhang W; Tekalur SA; Baumann M; McCabe LR
    J Biomech; 2013 Mar; 46(5):964-72. PubMed ID: 23337851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microcrack accumulation at different intervals during fatigue testing of compact bone.
    O'Brien FJ; Taylor D; Lee TC
    J Biomech; 2003 Jul; 36(7):973-80. PubMed ID: 12757806
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The double cantilever beam test applied to mode I fracture characterization of cortical bone tissue.
    Morais JJ; de Moura MF; Pereira FA; Xavier J; Dourado N; Dias MI; Azevedo JM
    J Mech Behav Biomed Mater; 2010 Aug; 3(6):446-53. PubMed ID: 20621027
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanical and morphological effects of strain rate on fatigue of compact bone.
    Schaffler MB; Radin EL; Burr DB
    Bone; 1989; 10(3):207-14. PubMed ID: 2803855
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of water and mineral-collagen interfacial bonding on microdamage progression in bone.
    Luo Q; Leng H; Wang X; Zhou Y; Rong Q
    J Orthop Res; 2014 Feb; 32(2):217-23. PubMed ID: 24122969
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Spontaneous formation of angiogenic woven bone within cancellous bones. Some observations on microfractures of isolated trabecula (author's transl)].
    Kölbel R
    Z Orthop Ihre Grenzgeb; 1978; 116(5):682-91. PubMed ID: 102093
    [TBL] [Abstract][Full Text] [Related]  

  • 54. European Society of Biomechanics S.M. Perren Award 2016: A statistical damage model for bone tissue based on distinct compressive and tensile cracks.
    Zysset PK; Schwiedrzik J; Wolfram U
    J Biomech; 2016 Nov; 49(15):3616-3625. PubMed ID: 27829493
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Age-related change in the damage morphology of human cortical bone and its role in bone fragility.
    Diab T; Condon KW; Burr DB; Vashishth D
    Bone; 2006 Mar; 38(3):427-31. PubMed ID: 16260195
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cement lines and interlamellar areas in compact bone as strain amplifiers - contributors to elasticity, fracture toughness and mechanotransduction.
    Nobakhti S; Limbert G; Thurner PJ
    J Mech Behav Biomed Mater; 2014 Jan; 29():235-51. PubMed ID: 24113298
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tensile and compressive strain evolutions of bovine compact bone under four-point bending fatigue loading.
    Meng X; Qin Q; Qu C
    J Mech Behav Biomed Mater; 2021 Nov; 123():104774. PubMed ID: 34404024
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling modulus reduction in bovine trabecular bone damaged in compression.
    Moore TL; Gibson LJ
    J Biomech Eng; 2001 Dec; 123(6):613-22. PubMed ID: 11783733
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aging and strength of bone as a structural material.
    Martin B
    Calcif Tissue Int; 1993; 53 Suppl 1():S34-9; discussion S39-40. PubMed ID: 8275378
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Shear strength and fatigue properties of human cortical bone determined from pure shear tests.
    Turner CH; Wang T; Burr DB
    Calcif Tissue Int; 2001 Dec; 69(6):373-8. PubMed ID: 11800235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.