These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 9130643)

  • 21. Dendritic cells and differential usage of the MHC class II transactivator promoters in the central nervous system in experimental autoimmune encephalitis.
    Suter T; Malipiero U; Otten L; Ludewig B; Muelethaler-Mottet A; Mach B; Reith W; Fontana A
    Eur J Immunol; 2000 Mar; 30(3):794-802. PubMed ID: 10741394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Progesterone down-regulates spinal cord inflammatory mediators and increases myelination in experimental autoimmune encephalomyelitis.
    Garay LI; González Deniselle MC; Brocca ME; Lima A; Roig P; De Nicola AF
    Neuroscience; 2012 Dec; 226():40-50. PubMed ID: 23000619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of neuropsin in the pathogenesis of experimental autoimmune encephalomyelitis.
    Terayama R; Bando Y; Yamada M; Yoshida S
    Glia; 2005 Nov; 52(2):108-18. PubMed ID: 15920728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed.
    Vainchtein ID; Vinet J; Brouwer N; Brendecke S; Biagini G; Biber K; Boddeke HW; Eggen BJ
    Glia; 2014 Oct; 62(10):1724-35. PubMed ID: 24953459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Region-specific regulation of inflammation and pathogenesis in experimental autoimmune encephalomyelitis.
    Archambault AS; Sim J; McCandless EE; Klein RS; Russell JH
    J Neuroimmunol; 2006 Dec; 181(1-2):122-32. PubMed ID: 17030428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytokine production profiles in chronic relapsing-remitting experimental autoimmune encephalomyelitis: IFN-γ and TNF-α are important participants in the first attack but not in the relapse.
    Hidaka Y; Inaba Y; Matsuda K; Itoh M; Kaneyama T; Nakazawa Y; Koh CS; Ichikawa M
    J Neurol Sci; 2014 May; 340(1-2):117-22. PubMed ID: 24655735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ulinastatin attenuates experimental autoimmune encephalomyelitis by enhancing anti-inflammatory responses.
    Feng M; Shu Y; Yang Y; Zheng X; Li R; Wang Y; Dai Y; Qiu W; Lu Z; Hu X
    Neurochem Int; 2014 Jan; 64():64-72. PubMed ID: 24274996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oligodendrocyte-specific FADD deletion protects mice from autoimmune-mediated demyelination.
    Mc Guire C; Volckaert T; Wolke U; Sze M; de Rycke R; Waisman A; Prinz M; Beyaert R; Pasparakis M; van Loo G
    J Immunol; 2010 Dec; 185(12):7646-53. PubMed ID: 21068410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis.
    Magliozzi R; Columba-Cabezas S; Serafini B; Aloisi F
    J Neuroimmunol; 2004 Mar; 148(1-2):11-23. PubMed ID: 14975582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Persistent macrophage/microglial activation and myelin disruption after experimental autoimmune encephalomyelitis in tissue inhibitor of metalloproteinase-1-deficient mice.
    Crocker SJ; Whitmire JK; Frausto RF; Chertboonmuang P; Soloway PD; Whitton JL; Campbell IL
    Am J Pathol; 2006 Dec; 169(6):2104-16. PubMed ID: 17148673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Therapeutic effect of PEGylated TNFR1-selective antagonistic mutant TNF in experimental autoimmune encephalomyelitis mice.
    Nomura T; Abe Y; Kamada H; Shibata H; Kayamuro H; Inoue M; Kawara T; Arita S; Furuya T; Yamashita T; Nagano K; Yoshikawa T; Yoshioka Y; Mukai Y; Nakagawa S; Taniai M; Ohta T; Serada S; Naka T; Tsunoda S; Tsutsumi Y
    J Control Release; 2011 Jan; 149(1):8-14. PubMed ID: 20036293
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opposing Functions of Microglial and Macrophagic TNFR2 in the Pathogenesis of Experimental Autoimmune Encephalomyelitis.
    Gao H; Danzi MC; Choi CS; Taherian M; Dalby-Hansen C; Ellman DG; Madsen PM; Bixby JL; Lemmon VP; Lambertsen KL; Brambilla R
    Cell Rep; 2017 Jan; 18(1):198-212. PubMed ID: 28052249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Early influx of macrophages determines susceptibility to experimental allergic encephalomyelitis in Dark Agouti (DA) rats.
    Mensah-Brown EP; Shahin A; Al Shamisi M; Lukic ML
    J Neuroimmunol; 2011 Mar; 232(1-2):68-74. PubMed ID: 21109309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential expression of protease M/neurosin in oligodendrocytes and their progenitors in an animal model of multiple sclerosis.
    Terayama R; Bando Y; Jiang YP; Mitrovic B; Yoshida S
    Neurosci Lett; 2005 Jul 1-8; 382(1-2):82-7. PubMed ID: 15911126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cxcl10 enhances blood cells migration in the sub-ventricular zone of mice affected by experimental autoimmune encephalomyelitis.
    Muzio L; Cavasinni F; Marinaro C; Bergamaschi A; Bergami A; Porcheri C; Cerri F; Dina G; Quattrini A; Comi G; Furlan R; Martino G
    Mol Cell Neurosci; 2010 Mar; 43(3):268-80. PubMed ID: 19969087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TNF production in macrophages is genetically determined and regulates inflammatory disease in rats.
    Gillett A; Marta M; Jin T; Tuncel J; Leclerc P; Nohra R; Lange S; Holmdahl R; Olsson T; Harris RA; Jagodic M
    J Immunol; 2010 Jul; 185(1):442-50. PubMed ID: 20505148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct angiotensin type 2 receptor (AT2R) stimulation attenuates T-cell and microglia activation and prevents demyelination in experimental autoimmune encephalomyelitis in mice.
    Valero-Esquitino V; Lucht K; Namsolleck P; Monnet-Tschudi F; Stubbe T; Lucht F; Liu M; Ebner F; Brandt C; Danyel LA; Villela DC; Paulis L; Thoene-Reineke C; Dahlöf B; Hallberg A; Unger T; Sumners C; Steckelings UM
    Clin Sci (Lond); 2015 Jan; 128(2):95-109. PubMed ID: 25052203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of established experimental allergic encephalomyelitis by inhibition of tumor necrosis factor (TNF) activity within the central nervous system using monoclonal antibodies and TNF receptor-immunoglobulin fusion proteins.
    Baker D; Butler D; Scallon BJ; O'Neill JK; Turk JL; Feldmann M
    Eur J Immunol; 1994 Sep; 24(9):2040-8. PubMed ID: 8088324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of CB2 receptor is required for the therapeutic effect of ABHD6 inhibition in experimental autoimmune encephalomyelitis.
    Wen J; Ribeiro R; Tanaka M; Zhang Y
    Neuropharmacology; 2015 Dec; 99():196-209. PubMed ID: 26189763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting CB(2) receptor as a neuroinflammatory modulator in experimental autoimmune encephalomyelitis.
    Lou ZY; Chen C; He Q; Zhao CB; Xiao BG
    Mol Immunol; 2011 Dec; 49(3):453-61. PubMed ID: 22024414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.