These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 9130700)
1. The spindle pole body component Spc97p interacts with the gamma-tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication. Knop M; Pereira G; Geissler S; Grein K; Schiebel E EMBO J; 1997 Apr; 16(7):1550-64. PubMed ID: 9130700 [TBL] [Abstract][Full Text] [Related]
2. The spindle pole body component Spc98p interacts with the gamma-tubulin-like Tub4p of Saccharomyces cerevisiae at the sites of microtubule attachment. Geissler S; Pereira G; Spang A; Knop M; Souès S; Kilmartin J; Schiebel E EMBO J; 1996 Aug; 15(15):3899-911. PubMed ID: 8670895 [TBL] [Abstract][Full Text] [Related]
3. A genetic analysis of interactions with Spc110p reveals distinct functions of Spc97p and Spc98p, components of the yeast gamma-tubulin complex. Nguyen T; Vinh DB; Crawford DK; Davis TN Mol Biol Cell; 1998 Aug; 9(8):2201-16. PubMed ID: 9693376 [TBL] [Abstract][Full Text] [Related]
4. Spc98p and Spc97p of the yeast gamma-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. Knop M; Schiebel E EMBO J; 1997 Dec; 16(23):6985-95. PubMed ID: 9384578 [TBL] [Abstract][Full Text] [Related]
5. Spc98p directs the yeast gamma-tubulin complex into the nucleus and is subject to cell cycle-dependent phosphorylation on the nuclear side of the spindle pole body. Pereira G; Knop M; Schiebel E Mol Biol Cell; 1998 Apr; 9(4):775-93. PubMed ID: 9529377 [TBL] [Abstract][Full Text] [Related]
6. Microtubule organization by the budding yeast spindle pole body. Knop M; Pereira G; Schiebel E Biol Cell; 1999; 91(4-5):291-304. PubMed ID: 10518996 [TBL] [Abstract][Full Text] [Related]
7. gamma-Tubulin-like Tub4p of Saccharomyces cerevisiae is associated with the spindle pole body substructures that organize microtubules and is required for mitotic spindle formation. Spang A; Geissler S; Grein K; Schiebel E J Cell Biol; 1996 Jul; 134(2):429-41. PubMed ID: 8707827 [TBL] [Abstract][Full Text] [Related]
8. Analysis of Tub4p, a yeast gamma-tubulin-like protein: implications for microtubule-organizing center function. Marschall LG; Jeng RL; Mulholland J; Stearns T J Cell Biol; 1996 Jul; 134(2):443-54. PubMed ID: 8707828 [TBL] [Abstract][Full Text] [Related]
9. Reconstitution and characterization of budding yeast gamma-tubulin complex. Vinh DB; Kern JW; Hancock WO; Howard J; Davis TN Mol Biol Cell; 2002 Apr; 13(4):1144-57. PubMed ID: 11950928 [TBL] [Abstract][Full Text] [Related]
10. The XMAP215 homologue Stu2 at yeast spindle pole bodies regulates microtubule dynamics and anchorage. Usui T; Maekawa H; Pereira G; Schiebel E EMBO J; 2003 Sep; 22(18):4779-93. PubMed ID: 12970190 [TBL] [Abstract][Full Text] [Related]
11. Elongation of centriolar microtubule triplets contributes to the formation of the mitotic spindle in gamma-tubulin-depleted cells. Raynaud-Messina B; Mazzolini L; Moisand A; Cirinesi AM; Wright M J Cell Sci; 2004 Nov; 117(Pt 23):5497-507. PubMed ID: 15479719 [TBL] [Abstract][Full Text] [Related]
12. Composition of the spindle pole body of Saccharomyces cerevisiae and the proteins involved in its duplication. Helfant AH Curr Genet; 2002 Feb; 40(5):291-310. PubMed ID: 11935220 [TBL] [Abstract][Full Text] [Related]
13. Receptors determine the cellular localization of a gamma-tubulin complex and thereby the site of microtubule formation. Knop M; Schiebel E EMBO J; 1998 Jul; 17(14):3952-67. PubMed ID: 9670012 [TBL] [Abstract][Full Text] [Related]
14. Gamma-tubulin complex-mediated anchoring of spindle microtubules to spindle-pole bodies requires Msd1 in fission yeast. Toya M; Sato M; Haselmann U; Asakawa K; Brunner D; Antony C; Toda T Nat Cell Biol; 2007 Jun; 9(6):646-53. PubMed ID: 17486116 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the human homologue of the yeast spc98p and its association with gamma-tubulin. Tassin AM; Celati C; Moudjou M; Bornens M J Cell Biol; 1998 May; 141(3):689-701. PubMed ID: 9566969 [TBL] [Abstract][Full Text] [Related]
16. A mutational analysis identifies three functional regions of the spindle pole component Spc110p in Saccharomyces cerevisiae. Sundberg HA; Davis TN Mol Biol Cell; 1997 Dec; 8(12):2575-90. PubMed ID: 9398677 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional electron microscopy analysis of ndc10-1 mutant reveals an aberrant organization of the mitotic spindle and spindle pole body defects in Saccharomyces cerevisiae. Romao M; Tanaka K; Sibarita JB; Ly-Hartig NT; Tanaka TU; Antony C J Struct Biol; 2008 Jul; 163(1):18-28. PubMed ID: 18515145 [TBL] [Abstract][Full Text] [Related]
18. The carboxy-terminus of Alp4 alters microtubule dynamics to induce oscillatory nuclear movement led by the spindle pole body in Schizosaccharomyces pombe. Masuda H; Miyamoto R; Haraguchi T; Hiraoka Y Genes Cells; 2006 Apr; 11(4):337-52. PubMed ID: 16611238 [TBL] [Abstract][Full Text] [Related]
19. Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. Kilmartin JV; Goh PY EMBO J; 1996 Sep; 15(17):4592-602. PubMed ID: 8887551 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function. Lin TC; Gombos L; Neuner A; Sebastian D; Olsen JV; Hrle A; Benda C; Schiebel E PLoS One; 2011 May; 6(5):e19700. PubMed ID: 21573187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]