These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 9130800)

  • 1. Developmental shift of synaptic vesicle protein 2 from axons to terminals in the primary visual projection of the hamster.
    Confaloni A; Lyckman AW; Moya KL
    Neuroscience; 1997 Apr; 77(4):1225-36. PubMed ID: 9130800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early postnatal expression of L1 by retinal fibers in the optic tract and synaptic targets of the Syrian hamster.
    Lyckman AW; Moya KL; Confaloni A; Jhaveri S
    J Comp Neurol; 2000 Jul; 423(1):40-51. PubMed ID: 10861535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunohistochemical localization of GAP-43 in the developing hamster retinofugal pathway.
    Moya KL; Jhaveri S; Schneider GE; Benowitz LI
    J Comp Neurol; 1989 Oct; 288(1):51-8. PubMed ID: 2794137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normal postnatal development of retinogeniculate axons and terminals and identification of inappropriately-located transient synapses: electron microscope studies of horseradish peroxidase-labelled retinal axons in the hamster.
    Campbell G; So KF; Lieberman AR
    Neuroscience; 1984 Nov; 13(3):743-59. PubMed ID: 6527777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the pattern of glutamate-like immunoreactivity in rat superior colliculus following retinal and visual cortical lesions.
    Ortega F; Hennequet L; SarrĂ­a R; Streit P; Grandes P
    Neuroscience; 1995 Jul; 67(1):125-34. PubMed ID: 7477893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation.
    Fujiyama F; Hioki H; Tomioka R; Taki K; Tamamaki N; Nomura S; Okamoto K; Kaneko T
    J Comp Neurol; 2003 Oct; 465(2):234-49. PubMed ID: 12949784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA; Tee LB; Lund RD; Beazley LD
    J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial stages of retinofugal axon development in the hamster: evidence for two distinct modes of growth.
    Jhaveri S; Edwards MA; Schneider GE
    Exp Brain Res; 1991; 87(2):371-82. PubMed ID: 1722759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diameters and terminal patterns of retinofugal axons in their target areas: an HRP study in two teleosts (Sebastiscus and Navodon).
    Ito H; Vanegas H; Murakami T; Morita Y
    J Comp Neurol; 1984 Dec; 230(2):179-97. PubMed ID: 6512016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stages of growth of hamster retinofugal axons: implications for developing axonal pathways with multiple targets.
    Bhide PG; Frost DO
    J Neurosci; 1991 Feb; 11(2):485-504. PubMed ID: 1992013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of expression of brain-derived neurotrophic factor and tyrosine kinase B mRNAs and distribution and ultrastructural localization of their proteins in the visual pathway of the adult rat.
    Avwenagha O; Bird MM; Lieberman AR; Yan Q; Campbell G
    Neuroscience; 2006 Jul; 140(3):913-28. PubMed ID: 16626872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and plasticity of the serotoninergic projection to the hamster's superior colliculus.
    Rhoades RW; Mooney RD; Chiaia NL; Bennett-Clarke CA
    J Comp Neurol; 1990 Sep; 299(2):151-66. PubMed ID: 2172325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in rapidly transported proteins associated with development of abnormal projections in the diencephalon.
    Moya KL; Benowitz LI; Sabel BA; Schneider GE
    Brain Res; 1992 Jul; 586(2):265-72. PubMed ID: 1381651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of presynaptic proteins is closely correlated with the chronotopic pattern of axons in the retinotectal system of the chick.
    Bergmann M; Grabs D; Rager G
    J Comp Neurol; 2000 Mar; 418(3):361-72. PubMed ID: 10701832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal ganglion cell terminals in the hamster superior colliculus: an ultrastructural study.
    Carter DA; Aguayo AJ; Bray GM
    J Comp Neurol; 1991 Sep; 311(1):97-107. PubMed ID: 1719046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibre organization of the monkey's optic tract: I. Segregation of functionally distinct optic axons.
    Reese BE; Cowey A
    J Comp Neurol; 1990 May; 295(3):385-400. PubMed ID: 2351758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal changes in arborization patterns of murine retinocollicular axons.
    Sachs GM; Jacobson M; Caviness VS
    J Comp Neurol; 1986 Apr; 246(3):395-408. PubMed ID: 3700722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of nitric oxide in the development of retinal projections.
    Vercelli A; Garbossa D; Repici M; Biasiol S; Jhaveri S
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):489-98. PubMed ID: 11729994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of 5-HT(1B) receptor and of serotonin transporter have different effects on the segregation of retinal axons in the lateral geniculate nucleus compared to the superior colliculus.
    Upton AL; Ravary A; Salichon N; Moessner R; Lesch KP; Hen R; Seif I; Gaspar P
    Neuroscience; 2002; 111(3):597-610. PubMed ID: 12031347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The morphology of optic tract axons arborizing in the superior colliculus of the hamster.
    Sachs GM; Schneider GE
    J Comp Neurol; 1984 Dec; 230(2):155-67. PubMed ID: 6512015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.