These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9131045)

  • 1. Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition.
    Grivennikova VG; Maklashina EO; Gavrikova EV; Vinogradov AD
    Biochim Biophys Acta; 1997 Apr; 1319(2-3):223-32. PubMed ID: 9131045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Sled VD; Vinogradov AD
    Biochim Biophys Acta; 1992 Jan; 1098(2):144-50. PubMed ID: 1730007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the inhibitory action of natural rotenone and its stereoisomers with various NADH-ubiquinone reductases.
    Ueno H; Miyoshi H; Ebisui K; Iwamura H
    Eur J Biochem; 1994 Oct; 225(1):411-7. PubMed ID: 7925463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active/de-active state transition of the mitochondrial complex I as revealed by specific sulfhydryl group labeling.
    Gavrikova EV; Vinogradov AD
    FEBS Lett; 1999 Jul; 455(1-2):36-40. PubMed ID: 10428467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Participation of the quinone acceptor in the transition of complex I from an inactive to active state].
    Maklashina EO; Vinogradov AD
    Biokhimiia; 1994 Nov; 59(11):1638-45. PubMed ID: 7873673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic activity of NADH-ubiquinone oxidoreductase (complex I) in intact mitochondria. evidence for the slow active/inactive transition.
    Grivennikova VG; Kapustin AN; Vinogradov AD
    J Biol Chem; 2001 Mar; 276(12):9038-44. PubMed ID: 11124957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G
    Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rotenone-insensitive reduction of quinones and nitrocompounds by mitochondrial NADH:ubiquinone reductase.
    Bironaite DA; Cenas NK; Kulys JJ
    Biochim Biophys Acta; 1991 Oct; 1060(2):203-9. PubMed ID: 1932041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors.
    Yamashita A; Miyoshi H; Hatano T; Iwamura H
    J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H; Wakai M; Ozawa T
    Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matrix NADH dehydrogenases of plant mitochondria and sites of quinone reduction by complex I.
    Menz RI; Griffith M; Day DA; Wiskich JT
    Eur J Biochem; 1992 Sep; 208(2):481-5. PubMed ID: 1521539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of the mitochondrial NADH-ubiquinone oxidoreductase interaction with hexammineruthenium(III).
    Sled VD; Vinogradov AD
    Biochim Biophys Acta; 1993 Mar; 1141(2-3):262-8. PubMed ID: 8443212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of delta mu H+ on the interaction of rotenone with complex I of submitochondrial particles.
    Kotlyar AB; Gutman M
    Biochim Biophys Acta; 1992 Dec; 1140(2):169-74. PubMed ID: 1445939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the mechanism of rotenone-insensitive reduction of quinones by mitochondrial NADH:ubiquinone reductase. The high affinity binding of NAD+ and NADH to the reduced enzyme form.
    Cénas NK; Bironaité DA; Kulys JJ
    FEBS Lett; 1991 Jun; 284(2):192-4. PubMed ID: 1905649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Hysteresis behavior of complex I from bovine heart mitochondria: kinetic and thermodynamic parameters of retarded reverse transition from the inactive to active state].
    Maklashina EO; Sled' VD; Vinogradov AD
    Biokhimiia; 1994 Jul; 59(7):946-57. PubMed ID: 7948420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles.
    van Belzen R; Kotlyar AB; Moon N; Dunham WR; Albracht SP
    Biochemistry; 1997 Jan; 36(4):886-93. PubMed ID: 9020788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Hysteresis behavior of complex I in delta mu H+-dependent reduction of NAD+ succinate].
    Kotliar AB; Vinogradov AD
    Biokhimiia; 1989 Jan; 54(1):9-16. PubMed ID: 2497801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles.
    Kotlyar AB; Sled VD; Burbaev DS; Moroz IA; Vinogradov AD
    FEBS Lett; 1990 May; 264(1):17-20. PubMed ID: 2159893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate].
    Kotliar AB
    Biokhimiia; 1990 Feb; 55(2):195-200. PubMed ID: 2111181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.