BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9131635)

  • 1. Identifying monoaminergic, GABAergic, and cholinergic characteristics in immortalized neuronal cell lines.
    Gallyas F; Satoh J; Takeuchi AM; Konishi Y; Kunishita T; Tabira T
    Neurochem Res; 1997 May; 22(5):569-75. PubMed ID: 9131635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Levels of amino acid neurotransmitters during mouse cerebellar neurogenesis and in histotypic cerebellar cultures.
    Miranda-Contreras L; Benítez-Diaz PR; Mendoza-Briceño RV; Delgado-Saez MC; Palacios-Prü EL
    Dev Neurosci; 1999; 21(2):147-58. PubMed ID: 10449987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of monoamine and amino acid neurotransmitters by primary astroglial cultures.
    Hansson E
    Neurochem Res; 1985 May; 10(5):667-75. PubMed ID: 2861578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glutaminergic, GABAergic, dopaminergic but not cholinergic neurons are susceptible to anaesthesia-induced cell death in the rat developing brain.
    Zhou ZW; Shu Y; Li M; Guo X; Pac-Soo C; Maze M; Ma D
    Neuroscience; 2011 Feb; 174():64-70. PubMed ID: 21056635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of putative amino acid neurotransmitters, monoamines and D-Ala2-Met-enkephalinamide in primary astroglial cultures from various brain areas, visualized by autoradiography.
    Hansson E
    Brain Res; 1983 Dec; 289(1-2):189-96. PubMed ID: 6140983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurochemical substrates and neuroanatomical generators of the event-related P300.
    Frodl-Bauch T; Bottlender R; Hegerl U
    Neuropsychobiology; 1999; 40(2):86-94. PubMed ID: 10474063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of medial septal glutamatergic neurons and their projection to the hippocampus.
    Colom LV; Castaneda MT; Reyna T; Hernandez S; Garrido-Sanabria E
    Synapse; 2005 Dec; 58(3):151-64. PubMed ID: 16108008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotransmitter synthesis by SN6 cell lines, a family of hybrid cell lines of embryonic septal origin.
    Gallyas F; Satoh J; Endoh M; Kunishita T; Tabira T
    J Neurosci Res; 1995 Dec; 42(6):784-90. PubMed ID: 8847740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of some transmitter actions in rat cerebellar slices.
    Flint RS; McBride WJ
    Life Sci; 1986 Jan; 38(3):233-9. PubMed ID: 2867450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate Cotransmission in Cholinergic, GABAergic and Monoamine Systems: Contrasts and Commonalities.
    Trudeau LE; El Mestikawy S
    Front Neural Circuits; 2018; 12():113. PubMed ID: 30618649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histological changes and neurotransmitter levels three months following perinatal asphyxia in the rat.
    Kohlhauser C; Kaehler S; Mosgoeller W; Singewald N; Kouvelas D; Prast H; Hoeger H; Lubec B
    Life Sci; 1999; 64(23):2109-24. PubMed ID: 10372653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Veratrum alkaloids as transmitter-releasing agents.
    Minchin MC
    J Neurosci Methods; 1980 Apr; 2(2):111-21. PubMed ID: 6104753
    [No Abstract]   [Full Text] [Related]  

  • 13. Transient alterations in neurotransmitter levels during a critical period of neural development in coho salmon (Oncorhyncus kisutch).
    Ebbesson SO; Smith J; Co C; Ebbesson LO
    Brain Res; 1996 Dec; 742(1-2):339-42. PubMed ID: 9117414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-HT receptor regulation of neurotransmitter release.
    Fink KB; Göthert M
    Pharmacol Rev; 2007 Dec; 59(4):360-417. PubMed ID: 18160701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental sex differences in amino acid neurotransmitter levels in hypothalamic and limbic areas of rat brain.
    Davis AM; Ward SC; Selmanoff M; Herbison AE; McCarthy MM
    Neuroscience; 1999; 90(4):1471-82. PubMed ID: 10338313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of postnatal trimethyltin or triethyltin treatment on CNS catecholamine, GABA, and acetylcholine systems in the rat.
    Mailman RB; Krigman MR; Frye GD; Hanin I
    J Neurochem; 1983 May; 40(5):1423-9. PubMed ID: 6834067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspartate: possible neurotransmitter in cerebellar climbing fibers.
    Wiklund L; Toggenburger G; Cuénod M
    Science; 1982 Apr; 216(4541):78-80. PubMed ID: 6121375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of GABAergic neuronal phenotype in primary cerebellar cultures following blockade of glutamate reuptake.
    Kovács AD; Cebers G; Cebere A; Liljequist S
    Brain Res; 2003 Jul; 977(2):209-20. PubMed ID: 12834881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widely expressed transcripts for chemokine receptor CXCR1 in identified glutamatergic, gamma-aminobutyric acidergic, and cholinergic neurons and astrocytes of the rat brain: a single-cell reverse transcription-multiplex polymerase chain reaction study.
    Danik M; Puma C; Quirion R; Williams S
    J Neurosci Res; 2003 Oct; 74(2):286-95. PubMed ID: 14515358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switching of the transmitters that mediate hindbrain correlated activity in the chick embryo.
    Mochida H; Sato K; Momose-Sato Y
    Eur J Neurosci; 2009 Jan; 29(1):14-30. PubMed ID: 19087161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.