These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 9131808)

  • 1. The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster.
    Lehmann FO; Dickinson MH
    J Exp Biol; 1997 Apr; 200(Pt 7):1133-43. PubMed ID: 9131808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambient temperature affects free-flight performance in the fruit fly Drosophila melanogaster.
    Lehmann FO
    J Comp Physiol B; 1999 Apr; 169(3):165-71. PubMed ID: 10335614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The control of flight force by a flapping wing: lift and drag production.
    Sane SP; Dickinson MH
    J Exp Biol; 2001 Aug; 204(Pt 15):2607-26. PubMed ID: 11533111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of in vivo power output and efficiency of Nasonia asynchronous flight muscle.
    Lehmann FO; Heymann N
    J Biotechnol; 2006 Jun; 124(1):93-107. PubMed ID: 16414139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The production of elevated flight force compromises manoeuvrability in the fruit fly Drosophila melanogaster.
    Lehmann FO; Dickinson MH
    J Exp Biol; 2001 Feb; 204(Pt 4):627-35. PubMed ID: 11171345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The significance of spiracle conductance and spatial arrangement for flight muscle function and aerodynamic performance in flying Drosophila.
    Heymann N; Lehmann FO
    J Exp Biol; 2006 May; 209(Pt 9):1662-77. PubMed ID: 16621947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The efficiency of aerodynamic force production in Drosophila.
    Lehmann FO
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Dec; 131(1):77-88. PubMed ID: 11733168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The aerodynamics of hovering flight in Drosophila.
    Fry SN; Sayaman R; Dickinson MH
    J Exp Biol; 2005 Jun; 208(Pt 12):2303-18. PubMed ID: 15939772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lift and power requirements of hovering flight in Drosophila virilis.
    Sun M; Tang J
    J Exp Biol; 2002 Aug; 205(Pt 16):2413-27. PubMed ID: 12124366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power output by an asynchronous flight muscle from a beetle.
    Josephson RK; Malamud JG; Stokes DR
    J Exp Biol; 2000 Sep; 203(Pt 17):2667-89. PubMed ID: 10934007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium and stretch activation modulate power generation in Drosophila flight muscle.
    Wang Q; Zhao C; Swank DM
    Biophys J; 2011 Nov; 101(9):2207-13. PubMed ID: 22067160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power and efficiency of insect flight muscle.
    Ellington CP
    J Exp Biol; 1985 Mar; 115():293-304. PubMed ID: 4031771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle efficiency and elastic storage in the flight motor of Drosophila.
    Dickinson MH; Lighton JR
    Science; 1995 Apr; 268(5207):87-90. PubMed ID: 7701346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The efficiency of an asynchronous flight muscle from a beetle.
    Josephson RK; Malamud JG; Stokes DR
    J Exp Biol; 2001 Dec; 204(Pt 23):4125-39. PubMed ID: 11809787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic variability of flight metabolism in Drosophila melanogaster. II. Relationship between power output and enzyme activity levels.
    Laurie-Ahlberg CC; Barnes PT; Curtsinger JW; Emigh TH; Karlin B; Morris R; Norman RA; Wilton AN
    Genetics; 1985 Dec; 111(4):845-68. PubMed ID: 3934033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle function in avian flight: achieving power and control.
    Biewener AA
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1496-506. PubMed ID: 21502121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium signalling indicates bilateral power balancing in the Drosophila flight muscle during manoeuvring flight.
    Lehmann FO; Skandalis DA; Berthé R
    J R Soc Interface; 2013 May; 10(82):20121050. PubMed ID: 23486171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.