These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 9132013)
1. Desensitization of the nicotinic acetylcholine receptor mainly involves a structural change in solvent-accessible regions of the polypeptide backbone. Baenziger JE; Chew JP Biochemistry; 1997 Mar; 36(12):3617-24. PubMed ID: 9132013 [TBL] [Abstract][Full Text] [Related]
2. Secondary structure of the exchange-resistant core from the nicotinic acetylcholine receptor probed directly by infrared spectroscopy and hydrogen/deuterium exchange. Méthot N; Baenziger JE Biochemistry; 1998 Oct; 37(42):14815-22. PubMed ID: 9778355 [TBL] [Abstract][Full Text] [Related]
3. Internal dynamics of the nicotinic acetylcholine receptor in reconstituted membranes. Baenziger JE; Darsaut TE; Morris ML Biochemistry; 1999 Apr; 38(16):4905-11. PubMed ID: 10213591 [TBL] [Abstract][Full Text] [Related]
4. Fourier transform infrared and hydrogen/deuterium exchange reveal an exchange-resistant core of alpha-helical peptide hydrogens in the nicotinic acetylcholine receptor. Baenziger JE; Méthot N J Biol Chem; 1995 Dec; 270(49):29129-37. PubMed ID: 7493938 [TBL] [Abstract][Full Text] [Related]
5. Structure of both the ligand- and lipid-dependent channel-inactive states of the nicotinic acetylcholine receptor probed by FTIR spectroscopy and hydrogen exchange. Méthot N; Demers CN; Baenziger JE Biochemistry; 1995 Nov; 34(46):15142-9. PubMed ID: 7578128 [TBL] [Abstract][Full Text] [Related]
6. Fourier transform infrared difference spectroscopy of the nicotinic acetylcholine receptor: evidence for specific protein structural changes upon desensitization. Baenziger JE; Miller KW; Rothschild KJ Biochemistry; 1993 May; 32(20):5448-54. PubMed ID: 8499448 [TBL] [Abstract][Full Text] [Related]
7. Secondary structure of the nicotinic acetylcholine receptor: implications for structural models of a ligand-gated ion channel. Méthot N; McCarthy MP; Baenziger JE Biochemistry; 1994 Jun; 33(24):7709-17. PubMed ID: 7516704 [TBL] [Abstract][Full Text] [Related]
8. Structural effects of neutral and anionic lipids on the nicotinic acetylcholine receptor. An infrared difference spectroscopy study. Ryan SE; Demers CN; Chew JP; Baenziger JE J Biol Chem; 1996 Oct; 271(40):24590-7. PubMed ID: 8798723 [TBL] [Abstract][Full Text] [Related]
9. Downscaling Fourier transform infrared spectroscopy to the micrometer and nanogram scale: secondary structure of serotonin and acetylcholine receptors. Rigler P; Ulrich WP; Hovius R; Ilegems E; Pick H; Vogel H Biochemistry; 2003 Dec; 42(47):14017-22. PubMed ID: 14636070 [TBL] [Abstract][Full Text] [Related]
10. Probing conformational changes in the nicotinic acetylcholine receptor by Fourier transform infrared difference spectroscopy. Baenziger JE; Miller KW; McCarthy MP; Rothschild KJ Biophys J; 1992 Apr; 62(1):64-6. PubMed ID: 1600101 [TBL] [Abstract][Full Text] [Related]
11. A1 reduction in intact cyanobacterial photosystem I particles studied by time-resolved step-scan Fourier transform infrared difference spectroscopy and isotope labeling. Sivakumar V; Wang R; Hastings G Biochemistry; 2005 Feb; 44(6):1880-93. PubMed ID: 15697214 [TBL] [Abstract][Full Text] [Related]
12. ATP-Induced phosphorylation of the sarcoplasmic reticulum Ca2+ ATPase: molecular interpretation of infrared difference spectra. Barth A; Mäntele W Biophys J; 1998 Jul; 75(1):538-44. PubMed ID: 9649416 [TBL] [Abstract][Full Text] [Related]
13. Conformational changes in the core structure of bacteriorhodopsin. Kluge T; Olejnik J; Smilowitz L; Rothschild KJ Biochemistry; 1998 Jul; 37(28):10279-85. PubMed ID: 9665736 [TBL] [Abstract][Full Text] [Related]
14. Mid- to low-frequency Fourier transform infrared spectra of S-state cycle for photosynthetic water oxidation in Synechocystis sp. PCC 6803. Yamanari T; Kimura Y; Mizusawa N; Ishii A; Ono TA Biochemistry; 2004 Jun; 43(23):7479-90. PubMed ID: 15182190 [TBL] [Abstract][Full Text] [Related]
15. Fourier transform infrared spectrometric analysis of protein conformation: effect of sampling method and stress factors. van de Weert M; Haris PI; Hennink WE; Crommelin DJ Anal Biochem; 2001 Oct; 297(2):160-9. PubMed ID: 11673883 [TBL] [Abstract][Full Text] [Related]
16. Lipid composition alters drug action at the nicotinic acetylcholine receptor. Baenziger JE; Ryan SE; Goodreid MM; Vuong NQ; Sturgeon RM; daCosta CJ Mol Pharmacol; 2008 Mar; 73(3):880-90. PubMed ID: 18055762 [TBL] [Abstract][Full Text] [Related]
17. Differences in conformational dynamics of ribonucleases A and S as observed by infrared spectroscopy and hydrogen-deuterium exchange. Dong A; Hyslop RM; Pringle DL Arch Biochem Biophys; 1996 Sep; 333(1):275-81. PubMed ID: 8806781 [TBL] [Abstract][Full Text] [Related]
18. Amide I two-dimensional infrared spectroscopy of proteins. Ganim Z; Chung HS; Smith AW; Deflores LP; Jones KC; Tokmakoff A Acc Chem Res; 2008 Mar; 41(3):432-41. PubMed ID: 18288813 [TBL] [Abstract][Full Text] [Related]
19. Infrared and circular dichroism spectroscopic characterization of structural differences between beta-lactoglobulin A and B. Dong A; Matsuura J; Allison SD; Chrisman E; Manning MC; Carpenter JF Biochemistry; 1996 Feb; 35(5):1450-7. PubMed ID: 8634275 [TBL] [Abstract][Full Text] [Related]
20. Changes in protein conformation and dynamics upon complex formation of brain-derived neurotrophic factor and its receptor: investigation by isotope-edited Fourier transform IR spectroscopy. Li T; Talvenheimo J; Zeni L; Rosenfeld R; Stearns G; Arakawa T Biopolymers; 2002; 67(1):10-9. PubMed ID: 11842409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]