These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 9132022)

  • 1. At physiological pH, d(CCG)15 forms a hairpin containing protonated cytosines and a distorted helix.
    Yu A; Barron MD; Romero RM; Christy M; Gold B; Dai J; Gray DM; Haworth IS; Mitas M
    Biochemistry; 1997 Mar; 36(12):3687-99. PubMed ID: 9132022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structures in d(CGG) and d(CCG) repeat tracts.
    Darlow JM; Leach DR
    J Mol Biol; 1998 Jan; 275(1):3-16. PubMed ID: 9451434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of a stable intramolecular DNA triple helix formation.
    Völker J; Botes DP; Lindsey GG; Klump HH
    J Mol Biol; 1993 Apr; 230(4):1278-90. PubMed ID: 8487304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragile X DNA triplet repeats, (GCC)n, form hairpins with single hydrogen-bonded cytosine.cytosine mispairs at the CpG sites: isotope-edited nuclear magnetic resonance spectroscopy on (GCC)n with selective 15N4-labeled cytosine bases.
    Mariappan SV; Silks LA; Bradbury EM; Gupta G
    J Mol Biol; 1998; 283(1):111-20. PubMed ID: 9761677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The trinucleotide repeat sequence d(CGG)15 forms a heat-stable hairpin containing Gsyn. Ganti base pairs.
    Mitas M; Yu A; Dill J; Haworth IS
    Biochemistry; 1995 Oct; 34(39):12803-11. PubMed ID: 7548035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA interstrand crosslink formation by mechlorethamine at a cytosine-cytosine mismatch pair: kinetics and sequence dependence.
    Romero RM; Rojsitthisak P; Haworth IS
    Arch Biochem Biophys; 2001 Feb; 386(2):143-53. PubMed ID: 11368336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of sequence context and length on the structure and stability of triplet repeat DNA oligomers.
    Paiva AM; Sheardy RD
    Biochemistry; 2004 Nov; 43(44):14218-27. PubMed ID: 15518572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for two preferred hairpin folding patterns in d(CGG).d(CCG) repeat tracts in vivo.
    Darlow JM; Leach DR
    J Mol Biol; 1998 Jan; 275(1):17-23. PubMed ID: 9451435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triple helical structures involving inosine: there is a penalty for promiscuity.
    Mills M; Völker J; Klump HH
    Biochemistry; 1996 Oct; 35(41):13338-44. PubMed ID: 8873600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressive myoclonus epilepsy [EPM1] repeat d(CCCCGCCCCGCG)n forms folded hairpin structures at physiological pH.
    Pataskar SS; Dash D; Brahmachari SK
    J Biomol Struct Dyn; 2001 Oct; 19(2):293-305. PubMed ID: 11697734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous cross-linking by mechlorethamine of DNA duplexes containing C-C mismatch pairs.
    Romero RM; Mitas M; Haworth IS
    Biochemistry; 1999 Mar; 38(12):3641-8. PubMed ID: 10090751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actinomycin D binds to metastable hairpins in single-stranded DNA.
    Wadkins RM; Vladu B; Tung CS
    Biochemistry; 1998 Aug; 37(34):11915-23. PubMed ID: 9718315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural polymorphism of homopurine DNA sequences. d(GGA)n and d(GGGA)n repeats form intramolecular hairpins stabilized by different base-pairing interactions.
    Huertas D; Azorín F
    Biochemistry; 1996 Oct; 35(40):13125-35. PubMed ID: 8855950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Length and pH-dependent energetics of (CCG)n and (CGG)n trinucleotide repeats.
    Amrane S; Mergny JL
    Biochimie; 2006 Sep; 88(9):1125-34. PubMed ID: 16690198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and folding dynamics of a DNA hairpin with a stabilising d(GNA) trinucleotide loop: influence of base pair mis-matches and point mutations on conformational equilibria.
    Balkwill GD; Williams HE; Searle MS
    Org Biomol Chem; 2007 Mar; 5(5):832-9. PubMed ID: 17315071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of cytosine protonation to the stability of parallel DNA triple helices.
    Asensio JL; Lane AN; Dhesi J; Bergqvist S; Brown T
    J Mol Biol; 1998 Feb; 275(5):811-22. PubMed ID: 9480771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the identification of an i-motif tetraplex core with a parallel-duplex junction as a structural motif in CCG triplet repeats.
    Chen YW; Jhan CR; Neidle S; Hou MH
    Angew Chem Int Ed Engl; 2014 Sep; 53(40):10682-6. PubMed ID: 25139267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The purine-rich trinucleotide repeat sequences d(CAG)15 and d(GAC)15 form hairpins.
    Yu A; Dill J; Mitas M
    Nucleic Acids Res; 1995 Oct; 23(20):4055-7. PubMed ID: 7479064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transition from a neutral-pH double helix to a low-pH triple helix induces a conformational switch in the CCCG tetraloop closing a Watson-Crick stem.
    van Dongen MJ; Wijmenga SS; van der Marel GA; van Boom JH; Hilbers CW
    J Mol Biol; 1996 Nov; 263(5):715-29. PubMed ID: 8947571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.