BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 9132025)

  • 21. The beta G156C substitution in the F1-ATPase from the thermophilic Bacillus PS3 affects catalytic site cooperativity by destabilizing the closed conformation of the catalytic site.
    Bandyopadhyay S; Valder CR; Huynh HG; Ren H; Allison WS
    Biochemistry; 2002 Dec; 41(48):14421-9. PubMed ID: 12450409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ionic track in the F1-ATPase from the thermophilic Bacillus PS3.
    Bandyopadhyay S; Allison WS
    Biochemistry; 2004 Mar; 43(9):2533-40. PubMed ID: 14992590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the catalytic and noncatalytic ADP binding sites of the F1-ATPase from the thermophilic bacterium, PS3.
    Yoshida M; Allison WS
    J Biol Chem; 1986 May; 261(13):5714-21. PubMed ID: 2871016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An attempt to convert noncatalytic nucleotide binding site of F1-ATPase to the catalytic site: hydrolysis of tethered ATP by mutated alpha subunits in the enzyme.
    Matsui T; Jault JM; Allison WS; Yoshida M
    Biochem Biophys Res Commun; 1996 Mar; 220(1):94-7. PubMed ID: 8602864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mg2+ coordination in catalytic sites of F1-ATPase.
    Weber J; Hammond ST; Wilke-Mounts S; Senior AE
    Biochemistry; 1998 Jan; 37(2):608-14. PubMed ID: 9425083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis.
    Murataliev MB
    Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the specificity of nucleotide binding to the F1-ATPase from thermophilic Bacillus PS3 and its isolated alpha and beta subunits with 2-N3-[beta, gamma-32P]ATP.
    Jault JM; Kaibara C; Yoshida M; Garrod S; Allison WS
    Arch Biochem Biophys; 1994 Apr; 310(1):282-8. PubMed ID: 8161217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of beta-Arg-182, an essential catalytic site residue in Escherichia coli F1-ATPase.
    Nadanaciva S; Weber J; Senior AE
    Biochemistry; 1999 Jun; 38(24):7670-7. PubMed ID: 10387006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides.
    Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E
    Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic activities of alpha3beta3gamma complexes of F1-ATPase with 1, 2, or 3 incompetent catalytic sites.
    Amano T; Hisabori T; Muneyuki E; Yoshida M
    J Biol Chem; 1996 Jul; 271(30):18128-33. PubMed ID: 8663463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of divalent cations on nucleotide exchange and ATPase activity of chloroplast coupling factor 1.
    Digel JG; Moore ND; McCarty RE
    Biochemistry; 1998 Dec; 37(49):17209-15. PubMed ID: 9860834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation by ADP and Mg2+ of the inactivation of the F1-ATPase from the thermophilic bacterium, PS3, with dicyclohexylcarbodiimide.
    Yoshida M; Allison WS
    J Biol Chem; 1983 Dec; 258(23):14407-12. PubMed ID: 6227624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetry of the three catalytic sites on beta subunits of TF1 from a thermophilic Bacillus strain PS3.
    Hisabori T; Kobayashi H; Kaibara C; Yoshida M
    J Biochem; 1994 Mar; 115(3):497-501. PubMed ID: 8056763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation.
    Shimabukuro K; Yasuda R; Muneyuki E; Hara KY; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14731-6. PubMed ID: 14657340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of nucleotide binding sites of the isolated H(+)-ATPase from spinach chloroplasts, CF(0)F(1).
    Creczynski-Pasa TB; Possmayer FE; Scofano HM; Gräber P
    Arch Biochem Biophys; 2000 Apr; 376(1):141-8. PubMed ID: 10729199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-affinity metal-binding site in beef heart mitochondrial F1ATPase: an EPR spectroscopy study.
    Zoleo A; Contessi S; Lippe G; Pinato L; Brustolon M; Brunel LC; Dabbeni-Sala F; Maniero AL
    Biochemistry; 2004 Oct; 43(41):13214-24. PubMed ID: 15476415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping of nucleotide-depleted mitochondrial F1-ATPase with 2-azido-[alpha-32P]adenosine diphosphate. Evidence for two nucleotide binding sites in the beta subunit.
    Lunardi J; Garin J; Issartel JP; Vignais PV
    J Biol Chem; 1987 Nov; 262(31):15172-81. PubMed ID: 2889735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tightly bound adenosine diphosphate, which inhibits the activity of mitochondrial F1-ATPase, is located at the catalytic site of the enzyme.
    Drobinskaya IY; Kozlov IA; Murataliev MB; Vulfson EN
    FEBS Lett; 1985 Mar; 182(2):419-24. PubMed ID: 2858407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The noncatalytic site-deficient alpha3beta3gamma subcomplex and FoF1-ATP synthase can continuously catalyse ATP hydrolysis when Pi is present.
    Bald D; Muneyuki E; Amano T; Kruip J; Hisabori T; Yoshida M
    Eur J Biochem; 1999 Jun; 262(2):563-8. PubMed ID: 10336643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of H+-transporting ATPase by formation of a tight nucleoside diphosphate-fluoroaluminate complex at the catalytic site.
    Lunardi J; Dupuis A; Garin J; Issartel JP; Michel L; Chabre M; Vignais PV
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8958-62. PubMed ID: 2904148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.