These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 9133378)
1. Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins. Abdel-Hamid KM; Tymianski M J Neurosci; 1997 May; 17(10):3538-53. PubMed ID: 9133378 [TBL] [Abstract][Full Text] [Related]
2. Properties of neuroprotective cell-permeant Ca2+ chelators: effects on [Ca2+]i and glutamate neurotoxicity in vitro. Tymianski M; Charlton MP; Carlen PL; Tator CH J Neurophysiol; 1994 Oct; 72(4):1973-92. PubMed ID: 7823112 [TBL] [Abstract][Full Text] [Related]
3. Modulation of hippocampal synaptic transmission by low concentrations of cell-permeant Ca2+ chelators: effects of Ca2+ affinity, chelator structure and binding kinetics. Spigelman I; Tymianski M; Wallace CM; Carlen PL; Velumian AA Neuroscience; 1996 Nov; 75(2):559-72. PubMed ID: 8931019 [TBL] [Abstract][Full Text] [Related]
4. Inhibiting neuronal migration by blocking NMDA receptors in the embryonic rat cerebral cortex: a tissue culture study. Hirai K; Yoshioka H; Kihara M; Hasegawa K; Sakamoto T; Sawada T; Fushiki S Brain Res Dev Brain Res; 1999 Apr; 114(1):63-7. PubMed ID: 10209243 [TBL] [Abstract][Full Text] [Related]
5. Late N-methyl-D-aspartate receptor blockade rescues hippocampal neurons from excitotoxic stress and death after 4-aminopyridine-induced epilepsy. Ayala GX; Tapia R Eur J Neurosci; 2005 Dec; 22(12):3067-76. PubMed ID: 16367773 [TBL] [Abstract][Full Text] [Related]
6. Accumulation and extrusion of permeant Ca2+ chelators in attenuation of synaptic transmission at hippocampal CA1 neurons. Ouanounou A; Zhang L; Tymianski M; Charlton MP; Wallace MC; Carlen PL Neuroscience; 1996 Nov; 75(1):99-109. PubMed ID: 8923526 [TBL] [Abstract][Full Text] [Related]
7. The effects of artificial calcium buffers on calcium responses and glutamate-mediated excitotoxicity in cultured hippocampal neurons. Abdel-Hamid KM; Baimbridge KG Neuroscience; 1997 Dec; 81(3):673-87. PubMed ID: 9316020 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of action and persistence of neuroprotection by cell-permeant Ca2+ chelators. Tymianski M; Spigelman I; Zhang L; Carlen PL; Tator CH; Charlton MP; Wallace MC J Cereb Blood Flow Metab; 1994 Nov; 14(6):911-23. PubMed ID: 7929656 [TBL] [Abstract][Full Text] [Related]
9. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals. Urbano FJ; Depetris RS; Uchitel OD Pflugers Arch; 2001 Mar; 441(6):824-31. PubMed ID: 11316267 [TBL] [Abstract][Full Text] [Related]
10. Intracellular injection of a Ca2+ chelator prevents generation of anoxic LTP. Crépel V; Ben-Ari Y J Neurophysiol; 1996 Feb; 75(2):770-9. PubMed ID: 8714651 [TBL] [Abstract][Full Text] [Related]
11. Impaired presynaptic cytosolic and mitochondrial calcium dynamics in aged compared to young adult hippocampal CA1 synapses ameliorated by calcium chelation. Tonkikh AA; Carlen PL Neuroscience; 2009 Apr; 159(4):1300-8. PubMed ID: 19215725 [TBL] [Abstract][Full Text] [Related]
12. Intracellular chelation of calcium prevents cell damage following severe hypoxia in the rat cerebral cortex as studied by NMR spectroscopy ex vivo. Gröhn O; Kauppinen R Cell Calcium; 1996 Dec; 20(6):509-14. PubMed ID: 8985596 [TBL] [Abstract][Full Text] [Related]
13. Neuronal death signaling by beta-bungarotoxin through the activation of the N-methyl-D-aspartate (NMDA) receptor and L-type calcium channel. Tseng WP; Lin-Shiau SY Biochem Pharmacol; 2003 Jan; 65(1):131-42. PubMed ID: 12473387 [TBL] [Abstract][Full Text] [Related]
14. Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices. Zhang L; Pennefather P; Velumian A; Tymianski M; Charlton M; Carlen PL J Neurophysiol; 1995 Dec; 74(6):2225-41. PubMed ID: 8747186 [TBL] [Abstract][Full Text] [Related]
15. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. Rozov A; Burnashev N; Sakmann B; Neher E J Physiol; 2001 Mar; 531(Pt 3):807-26. PubMed ID: 11251060 [TBL] [Abstract][Full Text] [Related]
16. Disruption of endoplasmic reticulum calcium stores is involved in neuronal death induced by glycolysis inhibition in cultured hippocampal neurons. Hernández-Fonseca K; Massieu L J Neurosci Res; 2005 Oct; 82(2):196-205. PubMed ID: 16175570 [TBL] [Abstract][Full Text] [Related]
17. Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers. Ohana O; Sakmann B J Physiol; 1998 Nov; 513 ( Pt 1)(Pt 1):135-48. PubMed ID: 9782165 [TBL] [Abstract][Full Text] [Related]
18. Lowering extracellular Na+ concentration causes NMDA receptor-mediated neuronal death in cultured rat hippocampal slices. Takahashi M; Hashimoto M Brain Res; 1996 Sep; 735(1):1-8. PubMed ID: 8905163 [TBL] [Abstract][Full Text] [Related]
19. Na(+) and Ca(2+) homeostasis pathways, cell death and protection after oxygen-glucose-deprivation in organotypic hippocampal slice cultures. Martínez-Sánchez M; Striggow F; Schröder UH; Kahlert S; Reymann KG; Reiser G Neuroscience; 2004; 128(4):729-40. PubMed ID: 15464281 [TBL] [Abstract][Full Text] [Related]
20. 1,2-bis(2-Aminophenoxy)ethane-N,N,N',N'-tetraacetic acid induces caspase-mediated apoptosis and reactive oxygen species-mediated necrosis in cultured cortical neurons. Han KS; Kang HJ; Kim EY; Yoon WJ; Sohn S; Kwon HJ; Gwag BJ J Neurochem; 2001 Jul; 78(2):230-9. PubMed ID: 11461958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]