BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 9133388)

  • 21. Efferent systems of the rabbit visual cortex: laminar distribution of the cells of origin, axonal conduction velocities, and identification of axonal branches.
    Swadlow HA; Weyand TG
    J Comp Neurol; 1981 Dec; 203(4):799-822. PubMed ID: 6173404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Connections of higher order visual relays in the thalamus: a study of corticothalamic pathways in cats.
    Guillery RW; Feig SL; Van Lieshout DP
    J Comp Neurol; 2001 Sep; 438(1):66-85. PubMed ID: 11503153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organization of geniculocortical projections in turtles: isoazimuth lamellae in the visual cortex.
    Mulligan KA; Ulinski PS
    J Comp Neurol; 1990 Jun; 296(4):531-47. PubMed ID: 2358551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphology of single geniculocortical afferents and functional recovery of the visual cortex after reverse monocular deprivation in the kitten.
    Antonini A; Gillespie DC; Crair MC; Stryker MP
    J Neurosci; 1998 Dec; 18(23):9896-909. PubMed ID: 9822746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical target depletion and ingrowth of geniculocortical axons: implications for cortical specification.
    Woo TU; Finlay BL
    Cereb Cortex; 1996; 6(3):457-69. PubMed ID: 8670671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of factors regulating lamina-specific growth of thalamocortical axons.
    Yamamoto N; Matsuyama Y; Harada A; Inui K; Murakami F; Hanamura K
    J Neurobiol; 2000 Jan; 42(1):56-68. PubMed ID: 10623901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1.
    Ding Y; Casagrande VA
    Vis Neurosci; 1997; 14(4):691-704. PubMed ID: 9278998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organization of the feedback pathway from striate cortex (V1) to the lateral geniculate nucleus (LGN) in the owl monkey (Aotus trivirgatus).
    Ichida JM; Casagrande VA
    J Comp Neurol; 2002 Dec; 454(3):272-83. PubMed ID: 12442318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brainstem inputs to the ferret medial geniculate nucleus and the effect of early deafferentation on novel retinal projections to the auditory thalamus.
    Angelucci A; Clascá F; Sur M
    J Comp Neurol; 1998 Oct; 400(3):417-39. PubMed ID: 9779945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat.
    Humphrey AL; Sur M; Uhlrich DJ; Sherman SM
    J Comp Neurol; 1985 Mar; 233(2):159-89. PubMed ID: 3973100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early development of ocular dominance columns.
    Crowley JC; Katz LC
    Science; 2000 Nov; 290(5495):1321-4. PubMed ID: 11082053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bifurcation of subcortical afferents to visual areas 17, 18, and 19 in the cat cortex.
    Bullier J; Kennedy H; Salinger W
    J Comp Neurol; 1984 Sep; 228(3):309-28. PubMed ID: 6207215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: axon morphology.
    Lachica EA; Casagrande VA
    J Comp Neurol; 1992 May; 319(1):141-58. PubMed ID: 1375606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in vitro model of the kitten retinogeniculate pathway.
    Guido W; Lo FS; Erzurumlu RS
    J Neurophysiol; 1997 Jan; 77(1):511-6. PubMed ID: 9120593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subplate neurons and the patterning of thalamocortial connections.
    Ghosh A
    Ciba Found Symp; 1995; 193():150-72; discussion 192-9. PubMed ID: 8727491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex.
    Fitzpatrick D; Usrey WM; Schofield BR; Einstein G
    Vis Neurosci; 1994; 11(2):307-15. PubMed ID: 7516176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphology and growth patterns of developing thalamocortical axons.
    Skaliora I; Adams R; Blakemore C
    J Neurosci; 2000 May; 20(10):3650-62. PubMed ID: 10804207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibitory mechanism by polysialic acid for lamina-specific branch formation of thalamocortical axons.
    Yamamoto N; Inui K; Matsuyama Y; Harada A; Hanamura K; Murakami F; Ruthazer ES; Rutishauser U; Seki T
    J Neurosci; 2000 Dec; 20(24):9145-51. PubMed ID: 11124992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17/18 border region, and to both areas 17 and 18.
    Humphrey AL; Sur M; Uhlrich DJ; Sherman SM
    J Comp Neurol; 1985 Mar; 233(2):190-212. PubMed ID: 3973101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of interstitial branching in the development of visual corticocortical connections: a time-lapse and fixed-tissue analysis.
    Ruthazer ES; Bachleda AR; Olavarria JF
    J Comp Neurol; 2010 Dec; 518(24):4963-79. PubMed ID: 21031561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.