These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9133397)

  • 1. Short-term plasticity during intrathalamic augmenting responses in decorticated cats.
    Steriade M; Timofeev I
    J Neurosci; 1997 May; 17(10):3778-95. PubMed ID: 9133397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular mechanisms underlying intrathalamic augmenting responses of reticular and relay neurons.
    Timofeev I; Steriade M
    J Neurophysiol; 1998 May; 79(5):2716-29. PubMed ID: 9582240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of thalamic and cortical neurons in augmenting responses and self-sustained activity: dual intracellular recordings in vivo.
    Steriade M; Timofeev I; Grenier F; Dürmüller N
    J Neurosci; 1998 Aug; 18(16):6425-43. PubMed ID: 9698333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
    Timofeev I; Steriade M
    J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular and network models for intrathalamic augmenting responses during 10-Hz stimulation.
    Bazhenov M; Timofeev I; Steriade M; Sejnowski TJ
    J Neurophysiol; 1998 May; 79(5):2730-48. PubMed ID: 9582241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
    Contreras D; Steriade M
    J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
    Steriade M; Contreras D; Curró Dossi R; Nuñez A
    J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short- and medium-term plasticity associated with augmenting responses in cortical slabs and spindles in intact cortex of cats in vivo.
    Timofeev I; Grenier F; Bazhenov M; Houweling AR; Sejnowski TJ; Steriade M
    J Physiol; 2002 Jul; 542(Pt 2):583-98. PubMed ID: 12122155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm.
    Contreras D; Steriade M
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leading role of thalamic over cortical neurons during postinhibitory rebound excitation.
    Grenier F; Timofeev I; Steriade M
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13929-34. PubMed ID: 9811903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational models of thalamocortical augmenting responses.
    Bazhenov M; Timofeev I; Steriade M; Sejnowski TJ
    J Neurosci; 1998 Aug; 18(16):6444-65. PubMed ID: 9698334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures.
    Lytton WW; Contreras D; Destexhe A; Steriade M
    J Neurophysiol; 1997 Apr; 77(4):1679-96. PubMed ID: 9114229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bursting and tonic discharges in two classes of reticular thalamic neurons.
    Contreras D; Curró Dossi R; Steriade M
    J Neurophysiol; 1992 Sep; 68(3):973-7. PubMed ID: 1432063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices.
    Destexhe A; Bal T; McCormick DA; Sejnowski TJ
    J Neurophysiol; 1996 Sep; 76(3):2049-70. PubMed ID: 8890314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity.
    Steriade M; Contreras D
    J Neurosci; 1995 Jan; 15(1 Pt 2):623-42. PubMed ID: 7823168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei.
    Curró Dossi R; Paré D; Steriade M
    J Neurophysiol; 1991 Mar; 65(3):393-406. PubMed ID: 2051187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiology of cat association cortical cells in vivo: intrinsic properties and synaptic responses.
    Nuñez A; Amzica F; Steriade M
    J Neurophysiol; 1993 Jul; 70(1):418-30. PubMed ID: 8395586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular mechanisms of the augmenting response: short-term plasticity in a thalamocortical pathway.
    Castro-Alamancos MA; Connors BW
    J Neurosci; 1996 Dec; 16(23):7742-56. PubMed ID: 8922430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular study of excitability in the seizure-prone neocortex in vivo.
    Steriade M; Amzica F
    J Neurophysiol; 1999 Dec; 82(6):3108-22. PubMed ID: 10601445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.