BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9133735)

  • 1. Analysis of the structure of a natural alternating d(TA)n sequence in yeast chromatin.
    Aranda A; Pérez-Ortín JE; Benham CJ; Del Olmo ML
    Yeast; 1997 Mar; 13(4):313-26. PubMed ID: 9133735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin structure of the yeast FBP1 gene: transcription-dependent changes in the regulatory and coding regions.
    del Olmo ML; Sogo JM; Franco L; Pérez-Ortín JE
    Yeast; 1993 Nov; 9(11):1229-40. PubMed ID: 8109172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context.
    Tanaka S; Livingstone-Zatchej M; Thoma F
    J Mol Biol; 1996 Apr; 257(5):919-34. PubMed ID: 8632475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene.
    Wellinger RE; Thoma F
    EMBO J; 1997 Aug; 16(16):5046-56. PubMed ID: 9305646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Z-DNA as a nucleosome-boundary element in yeast Saccharomyces cerevisiae.
    Wong B; Chen S; Kwon JA; Rich A
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2229-34. PubMed ID: 17284586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Destabilization of nucleosomes by an unusual DNA conformation adopted by poly(dA) small middle dotpoly(dT) tracts in vivo.
    Shimizu M; Mori T; Sakurai T; Shindo H
    EMBO J; 2000 Jul; 19(13):3358-65. PubMed ID: 10880448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new glucose-repressible gene identified from the analysis of chromatin structure in deletion mutants of yeast SUC2 locus.
    Igual JC; Matallaná E; Gonzalez-Bosch C; Franco L; Pérez-Ortin JE
    Yeast; 1991; 7(4):379-89. PubMed ID: 1872029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Structural and functional chromatin organization of the SUP35 gene in Saccharomyces cerevisiae yeast].
    Riabinkova NA; Vodop'ianova LG; Samsonova MG; Miasikova EM; Osipova TN
    Genetika; 1997 Apr; 33(4):451-7. PubMed ID: 9206662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Length-dependent cruciform extrusion in d(GTAC)n sequences.
    Naylor LH; Yee HA; van de Sande JH
    J Biomol Struct Dyn; 1988 Feb; 5(4):895-912. PubMed ID: 3271495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonistic forces that position nucleosomes in vivo.
    Whitehouse I; Tsukiyama T
    Nat Struct Mol Biol; 2006 Jul; 13(7):633-40. PubMed ID: 16819518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific interactions of the telomeric protein Rap1p with nucleosomal binding sites.
    Rossetti L; Cacchione S; De Menna A; Chapman L; Rhodes D; Savino M
    J Mol Biol; 2001 Mar; 306(5):903-13. PubMed ID: 11237607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences.
    Shen CH; Leblanc BP; Alfieri JA; Clark DJ
    Mol Cell Biol; 2001 Jan; 21(2):534-47. PubMed ID: 11134341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unwound regions in yeast centromere IV DNA.
    Tal M; Shimron F; Yagil G
    J Mol Biol; 1994 Oct; 243(2):179-89. PubMed ID: 7932748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo topography of Rap1p-DNA complex at Saccharomyces cerevisiae TEF2 UAS(RPG) during transcriptional regulation.
    De Sanctis V; La Terra S; Bianchi A; Shore D; Burderi L; Di Mauro E; Negri R
    J Mol Biol; 2002 Apr; 318(2):333-49. PubMed ID: 12051841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico approaches reveal the potential for DNA sequence-dependent histone octamer affinity to influence chromatin structure in vivo.
    Fraser RM; Allan J; Simmen MW
    J Mol Biol; 2006 Dec; 364(4):582-98. PubMed ID: 17027853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A natural A/T-rich sequence from the yeast FBP1 gene exists as a cruciform in Escherichia coli cells.
    del Olmo M; Pérez-Ortín JE
    Plasmid; 1993 May; 29(3):222-32. PubMed ID: 8356116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel unusual DNA structure formed in an inverted repeat sequence.
    Kato M; Matsunaga K; Shimizu N
    Biochem Biophys Res Commun; 1998 May; 246(2):532-4. PubMed ID: 9610396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Re-cracking the nucleosome positioning code.
    Segal MR
    Stat Appl Genet Mol Biol; 2008; 7(1):Article14. PubMed ID: 18454729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-DNA interactions in vivo--examining genes in Saccharomyces cerevisiae and Drosophila melanogaster by chromatin footprinting.
    Hull MW; Thomas G; Huibregtse JM; Engelke DR
    Methods Cell Biol; 1991; 35():383-415. PubMed ID: 1664031
    [No Abstract]   [Full Text] [Related]  

  • 20. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.