BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9134028)

  • 1. Novel method for following lymphocyte traffic in mice using [3H]glycerol labeling.
    Constantin G; Laudanna C; Butcher EC
    J Immunol Methods; 1997 Apr; 203(1):35-44. PubMed ID: 9134028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of lymphocyte circulation in mice by pertussis toxin.
    Sewell WA; Andrews P
    Immunol Cell Biol; 1989 Oct; 67 ( Pt 5)():291-6. PubMed ID: 2613276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of extensive lymphocyte death in sheep Peyer's patches. II. The number and fate of newly-formed lymphocytes that emigrate from Peyer's patches.
    Pabst R; Reynolds JD
    J Immunol; 1986 Mar; 136(6):2011-7. PubMed ID: 3950408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of lymphocyte extravasation. III. The loss of lymphocyte extravasation potential induced by pertussis toxin is not mediated via the activation of protein kinase C.
    Huang K; Im SY; Samlowski WE; Daynes RA
    J Immunol; 1989 Jul; 143(1):229-38. PubMed ID: 2732469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control mechanism of lymphocyte traffic. A study of the action of two sulfated polysaccharides on the distribution of 51Cr- and [3H]adenosine-labeled mouse lymph node cells.
    Freitas AA; De Sousa M
    Cell Immunol; 1977 Jun; 31(1):62-76. PubMed ID: 559549
    [No Abstract]   [Full Text] [Related]  

  • 6. Reovirus transport--studies using lymphocytosis promoting factor.
    Sugimoto M; Sharpe AH; Sato Y; Greene MI; Fields BN
    Pathobiology; 1990; 58(4):185-92. PubMed ID: 2174674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of lymphocyte extravasation. I. Studies of two selective inhibitors of lymphocyte recirculation.
    Spangrude GJ; Braaten BA; Daynes RA
    J Immunol; 1984 Jan; 132(1):354-62. PubMed ID: 6537815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnitude and pattern of thymic lymphocyte migration in neonatal mice.
    Joel DD; Hess MW; Cottier H
    J Exp Med; 1972 Apr; 135(4):907-23. PubMed ID: 5018055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The emigration of lymphocytes from Peyer's patches in sheep.
    Reynolds JD; Pabst R
    Eur J Immunol; 1984 Jan; 14(1):7-13. PubMed ID: 6692840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of vasoactive intestinal peptide, substance P, and somatostatin on immunoglobulin synthesis and proliferations by lymphocytes from Peyer's patches, mesenteric lymph nodes, and spleen.
    Stanisz AM; Befus D; Bienenstock J
    J Immunol; 1986 Jan; 136(1):152-6. PubMed ID: 2415614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual effects of pertussis toxin on lymphoid cells in culture.
    Vistica BP; McAllister CG; Sekura RD; Ihle JN; Gery I
    Cell Immunol; 1986 Aug; 101(1):232-41. PubMed ID: 3091265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of pertussis toxin inhibition of lymphocyte-HEV interactions. I. Analysis of lymphocyte homing receptor-mediated binding mechanisms.
    Steen PD; Ashwood ER; Huang K; Daynes RA; Chung HT; Samlowski WE
    Cell Immunol; 1990 Nov; 131(1):67-85. PubMed ID: 2225081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats, III. Increase in frequency of CD62L-positive T cells in Peyer's patches by FTY720-induced lymphocyte homing.
    Yanagawa Y; Masubuchi Y; Chiba K
    Immunology; 1998 Dec; 95(4):591-4. PubMed ID: 9893050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of apoptosis and changes in lymphocyte subsets in thymus, mesenteric lymph nodes and Peyer's patches of mice orally inoculated with T-2 toxin.
    Nagata T; Suzuki H; Ishigami N; Shinozuka J; Uetsuka K; Nakayama H; Doi K
    Exp Toxicol Pathol; 2001 Sep; 53(4):309-15. PubMed ID: 11665856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lymphocyte traffic through lymph nodes and Peyer's patches of the rat: B- and T-cell-specific migration patterns within the tissue, and their dependence on splenic tissue.
    Blaschke V; Micheel B; Pabst R; Westermann J
    Cell Tissue Res; 1995 Dec; 282(3):377-86. PubMed ID: 8581932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-selectin is not essential for naive CD4 cell trafficking or development of primary responses in Peyer's patches.
    Bradley LM; Malo ME; Tonkonogy SL; Watson SR
    Eur J Immunol; 1997 May; 27(5):1140-6. PubMed ID: 9174603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some observations on the in vitro reactivity of lymphoid subpopulations.
    Diamond B; Knight SC; Lance EM
    Cell Immunol; 1974 Mar; 11(1-3):239-46. PubMed ID: 4281723
    [No Abstract]   [Full Text] [Related]  

  • 18. Changes in the homing properties of labeled lymphoid cells caused by solid tumor growth.
    Gillette RW; Boone CW
    Cell Immunol; 1974 Jun; 12(3):363-9. PubMed ID: 4471649
    [No Abstract]   [Full Text] [Related]  

  • 19. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes.
    Streeter PR; Rouse BT; Butcher EC
    J Cell Biol; 1988 Nov; 107(5):1853-62. PubMed ID: 2460470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control mechanism of lymphocyte traffic. Altered migration of 51Cr-labeled mouse lymph node cells pretreated in vitro with phospholipases.
    Freitas AA; de Sousa M
    Eur J Immunol; 1976 Oct; 6(10):703-11. PubMed ID: 827945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.