These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 913405)

  • 1. Thermodynamics and kinetics of photophosphorylation in bacterial chromatophores and their relation with the transmembrane electrochemical potential difference of protons.
    Baccarini Melandri A; Casadio R; Melandri BA
    Eur J Biochem; 1977 Sep; 78(2):389-402. PubMed ID: 913405
    [No Abstract]   [Full Text] [Related]  

  • 2. Electrochemical proton gradient and phosphate potential in bacterial chromatophores.
    Casadio R; Baccarini Melandri A; Zannoni D; Melandri BA
    FEBS Lett; 1974 Dec; 49(2):203-7. PubMed ID: 4442600
    [No Abstract]   [Full Text] [Related]  

  • 3. The relation between H+-uptake and electron flow in chromatophores from photosynthetic bacteria.
    Crofts AR; Evans EH; Cogdell RJ
    Ann N Y Acad Sci; 1974 Feb; 227():227-43. PubMed ID: 4597309
    [No Abstract]   [Full Text] [Related]  

  • 4. The stimulation of photophosphorylation and ATPase by artificial redox mediators in chromatophores of Rhodopseudomonas capsulata at different redox potentials.
    Baccarini-Melandri A; Melandri BA; Hauska G
    J Bioenerg Biomembr; 1979 Apr; 11(1-2):1-16. PubMed ID: 162342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced electron transport pathways in membrane preparations from Rhodopseudomonas capsulata.
    Hochman A; Gen-Hayyim G; Carmeli C
    Arch Biochem Biophys; 1977 Dec; 184(2):416-22. PubMed ID: 596882
    [No Abstract]   [Full Text] [Related]  

  • 6. A role for ubiquinone-10 in the b--c2 segment of the photosynthetic bacterial electron transport chain.
    Baccarini-Melandri A; Melandri BA
    FEBS Lett; 1977 Aug; 80(2):459-64. PubMed ID: 891997
    [No Abstract]   [Full Text] [Related]  

  • 7. Electrical potential changes, H+ translocation and phosphorylation induced by short flash excitation in Rhodopseudomonas sphaeroides chromatophores.
    Saphon S; Jackson JB; Witt HT
    Biochim Biophys Acta; 1975 Oct; 408(1):67-82. PubMed ID: 240444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the extent of localization of the energized membrane state in chromatophores from Rhodopseudomonas capsulata N22.
    Hitchens GD; Kell DB
    Biochem J; 1982 Aug; 206(2):351-7. PubMed ID: 7150247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive measurement of flash induced photophosphorylation in bacterial chromatophores by firefly luciferase.
    Lundin A; Thore A; Baltscheffsky M
    FEBS Lett; 1977 Jul; 79(1):73-6. PubMed ID: 408188
    [No Abstract]   [Full Text] [Related]  

  • 10. Localized energy coupling during photophosphorylation by chromatophores of Rhodopseudomonas capsulata N22.
    Hitchens GD; Kell DB
    Biosci Rep; 1982 Oct; 2(10):743-9. PubMed ID: 6293600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncouplers can shuttle between localized energy-coupling sites during photophosphorylation by chromatophores of Rhodopseudomonas capsulata N22.
    Hitchens GD; Kell DB
    Biochem J; 1983 Apr; 212(1):25-30. PubMed ID: 6870853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetic and redox potentiometric resolution of the carotenoid shifts in Rhodopseudomonas spheroides chromatophores: their relationship to electric field alterations in electron transport and energy coupling.
    Jackson JB; Dutton PL
    Biochim Biophys Acta; 1973 Oct; 325(1):102-13. PubMed ID: 4358810
    [No Abstract]   [Full Text] [Related]  

  • 13. On the calibration of the carotenoid band shift with diffusion potentials.
    Symons M; Nuyten A; Sybesma C
    FEBS Lett; 1979 Nov; 107(1):10-4. PubMed ID: 499529
    [No Abstract]   [Full Text] [Related]  

  • 14. H+ uptake by chromatophores from Rhodopseudomonas spheroides. The relation between rapid H+ uptake and the H+ pump.
    Cogdell RJ; Crofts AR
    Biochim Biophys Acta; 1974 May; 347(2):264-72. PubMed ID: 4546206
    [No Abstract]   [Full Text] [Related]  

  • 15. On the determination of the transmembrane pH difference in bacterial chromatophores using 9-aminoacridine.
    Casadio R; Baccarini-Melandri A; Melandri BA
    Eur J Biochem; 1974 Aug; 47(1):121-8. PubMed ID: 4434984
    [No Abstract]   [Full Text] [Related]  

  • 16. A comparison of beauvericin, enniatin and valinomycin as calcium transporting agents in liposomes and chromatophores.
    Prince RC; Crofts AR; Steinrauf LK
    Biochem Biophys Res Commun; 1974 Jul; 59(2):697-703. PubMed ID: 4546705
    [No Abstract]   [Full Text] [Related]  

  • 17. The influence of energy-transfer inhibitors on proton permeability and photophosphorylation in normal and preilluminated Rhodospirillum rubrum chromatophores.
    Slooten L; Branders C
    Biochim Biophys Acta; 1979 Jul; 547(1):79-90. PubMed ID: 37903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of acid-base phosphorylation in chromatophores in the presence of a K+ diffusion potential.
    Leiser M; Gromet-Elhanan Z
    FEBS Lett; 1974 Aug; 43(3):267-70. PubMed ID: 4213021
    [No Abstract]   [Full Text] [Related]  

  • 19. Cyclic photophosphorylation by chromatophores of the facultative phototroph, Rhodopseudomonas capsulata.
    Klemme JH; Schlegel HG
    Arch Mikrobiol; 1968; 63(2):154-69. PubMed ID: 5703717
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetics and stoichiometry of proton binding in Phodopseudomonas sphaeroides chromatophores.
    Petty KM; Jackson JB; Dutton PL
    FEBS Lett; 1977 Dec; 84(2):299-303. PubMed ID: 23313
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.