These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 913405)
21. The effect of diaminodurene on the delayed light and the carotenoid band shift in Rhodopseudomonas spheroides. Sherman LA Biochim Biophys Acta; 1972; 283(1):67-78. PubMed ID: 4539374 [No Abstract] [Full Text] [Related]
22. Proton uptake and quenching of bacteriochlorophyll fluorescence in Rhodopseudomonas spheroides. Sherman LA; Cohen WS Biochim Biophys Acta; 1972; 283(1):54-66. PubMed ID: 4539373 [No Abstract] [Full Text] [Related]
23. The kinetics of light induced carotenoid changes in Rhodopseudomonas spheroides and their relation to electrical field generation across the chromatophore membrane. Jackson JB; Crofts AR Eur J Biochem; 1971 Jan; 18(1):120-30. PubMed ID: 5540508 [No Abstract] [Full Text] [Related]
24. Nucleotide exchange in membrane vesicles from the photosynthetic bacterium Rhodopseudomonas capsulata. Hochman A; Bittan R; Carmeli C Arch Biochem Biophys; 1981 Oct; 211(1):413-8. PubMed ID: 7305378 [No Abstract] [Full Text] [Related]
25. A comparison of electron transport and photophosphorylation systems of Rhodopseudomonas capsulata and Rhodospirillum rubrum. Effects of antimycin A and dibromothymoquinone. Gromet-Elhanan Z; Gest H Arch Microbiol; 1978 Jan; 116(1):29-34. PubMed ID: 414685 [TBL] [Abstract][Full Text] [Related]
26. The extent of the stimulated electrical potential decay under phosphorylating conditions and the H+/ATP ratio in Rhodopseudomonas sphaeroides chromatophores following short flash excitation. Jackson JB; Saphon S; Witt HT Biochim Biophys Acta; 1975 Oct; 408(1):83-92. PubMed ID: 240445 [TBL] [Abstract][Full Text] [Related]
27. Sidedness of membrane structures in Rhodopseudomonas sphaeroides. Electrochemical titration of the spectrum changes of carotenoid in spheroplasts, spheroplast membrane vesicles and chromatophores. Matsuura K; Nishimura M Biochim Biophys Acta; 1977 Mar; 459(3):483-91. PubMed ID: 300247 [TBL] [Abstract][Full Text] [Related]
28. The effect of redox potential on the coupling between rapid hydrogen-ion binding and electron transport in chromatophores from Rhodopseudomonas spheroides. Cogdell RJ; Jackson JB; Crofts AR J Bioenerg; 1973 Jan; 4(1):211-27. PubMed ID: 4541536 [No Abstract] [Full Text] [Related]
29. Light-induced oxygen reduction as a probe of electron transport between respiratory and photosynthetic components in membranes of Rhodopseudomonas capsulata. Zannoni D; Jasper P; Marrs B Arch Biochem Biophys; 1978 Dec; 191(2):625-31. PubMed ID: 742893 [No Abstract] [Full Text] [Related]
30. In situ characterisation of photosynthetic electron transport in Rhodopseudomonas capsulata. Evans EH; Crofts AR Biochim Biophys Acta; 1974 Jul; 357(1):89-102. PubMed ID: 4370093 [No Abstract] [Full Text] [Related]
31. Absorption changes of carotenoids and bacteriochlorophyll in energized chromatophores of Rhodospirillum rubrum. Barsky EL; Samuilov VD Biochim Biophys Acta; 1973 Dec; 325(3):454-62. PubMed ID: 4360256 [No Abstract] [Full Text] [Related]
32. Kinetic measurements of electron transfer in coupled chromatophores from photosynthetic bacteria. A method of correction for the electrochromic effects. Venturoli G; Virgili M; Melandri BA; Crofts AR FEBS Lett; 1987 Jul; 219(2):477-84. PubMed ID: 3609307 [TBL] [Abstract][Full Text] [Related]
33. Carotenoid and merocyanine probes in chromatophore membranes. Chance B Biomembranes; 1975; 7():33-55. PubMed ID: 804940 [No Abstract] [Full Text] [Related]
34. The induction kinetics of bacterial photophosphorylation. Threshold effects by the phosphate potential and correlation with the amplitude of the carotenoid absorption band shift. Melandri BA; Venturoli G; de Santis A; Baccarini-Melandri A Biochim Biophys Acta; 1980 Aug; 592(1):38-52. PubMed ID: 7397138 [TBL] [Abstract][Full Text] [Related]
35. Postillumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. I. Conditions for maximal yields. Leiser M; Gromet-Elhanan Z J Biol Chem; 1975 Jan; 250(1):84-9. PubMed ID: 237896 [TBL] [Abstract][Full Text] [Related]
36. Cytochrome c2--reaction centre coupling in chromatophores of Rhodopseudomonas sphaeroides and Rhodopseudomonas capsulata. Bowyer JR; Tierney GV; Crofts AR FEBS Lett; 1979 May; 101(1):207-12. PubMed ID: 221250 [No Abstract] [Full Text] [Related]
37. Effect of ferredoxin on bacterial photophosphorylation. Shanmugam KT; Arnon DI Biochim Biophys Acta; 1972 Feb; 256(2):487-97. PubMed ID: 4622736 [No Abstract] [Full Text] [Related]
38. Phosphorylation coupled to H2 oxidation by chromatophores from Rhodopseudomonas capsulata. Paul F; Colbeau A; Vignais PM FEBS Lett; 1979 Oct; 106(1):29-33. PubMed ID: 499500 [No Abstract] [Full Text] [Related]
39. [Cyclic electron transfer and membrane potential generation in chromatophores on non-sulfur bacteria Rhodospirillum rubrum]. Remennikov VG; Samuilov VD Biokhimiia; 1980 Jul; 45(7):1298-304. PubMed ID: 6783130 [TBL] [Abstract][Full Text] [Related]
40. The functional unit of electrical events and phosphorylation in chromatophores from Rhodopseudomonas sphaeroides. Saphon S; Jackson JB; Lerbs V; Witt HT Biochim Biophys Acta; 1975 Oct; 408(1):58-66. PubMed ID: 1080674 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]