These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 913421)

  • 1. Dependence of tRNA structure in solution upon ionic condition of the solvent. Fluorescence studies of Mg2+ binding to tRNAPhe from barley embryos.
    Labuda D; Haertlé T; Augustyniak J
    Eur J Biochem; 1977 Sep; 79(1):293-301. PubMed ID: 913421
    [No Abstract]   [Full Text] [Related]  

  • 2. Dependence of tRNA structure in solution upon ionic condition of the solvent. Fluorescence studies of monovalent cation binding to tRNAPhe from barley embryos.
    Labuda D; Augustyniak J
    Eur J Biochem; 1977 Sep; 79(1):303-7. PubMed ID: 913422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential melting curves.
    Römer R; Hach R
    Eur J Biochem; 1975 Jun; 55(1):271-84. PubMed ID: 1100382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative binding of magnesium to transfer ribonucleic acid studied by a fluorescent probe.
    Lynch DC; Schimmel PR
    Biochemistry; 1974 Apr; 13(9):1841-52. PubMed ID: 4601164
    [No Abstract]   [Full Text] [Related]  

  • 5. On the structure and conformational dynamics of yeast phenylalanine-accepting transfer ribonucleic acid in solution.
    Ehrenberg M; Rigler R; Wintermeyer W
    Biochemistry; 1979 Oct; 18(21):4588-99. PubMed ID: 387074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-ligant interactions. (I) Magnesium binding sites in yeast tRNAPhe.
    Holbrook SR; Sussman JL; Warrant RW; Church GM; Kim SH
    Nucleic Acids Res; 1977 Aug; 4(8):2811-20. PubMed ID: 333395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational peculiarities of tRNAMetf from E. coli as revealed by fluorescent methods.
    Surovaya AN; Borissova OF
    Mol Biol Rep; 1976 Jul; 2(6):487-95. PubMed ID: 785233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multistep mechanism of codon recognition by transfer ribonucleic acid.
    Labuda D; Pörschke D
    Biochemistry; 1980 Aug; 19(16):3799-805. PubMed ID: 7407070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The conformation of the tRNAPhe anticodon loop monitored by fluorescence.
    Wells BD
    Nucleic Acids Res; 1984 Feb; 12(4):2157-70. PubMed ID: 6366743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Codon-dependent rearrangement of the three-dimensional structure of phenylalanine tRNA, exposing the T-psi-C-G sequence for binding to the 50S ribosomal subunit.
    Schwarz U; Menzel HM; Gassen HG
    Biochemistry; 1976 Jun; 15(11):2484-90. PubMed ID: 776221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of ethidium bromide binding as a probe of transfer ribonucleic acid structure.
    Tritton TR; Mohr SC
    Biochemistry; 1973 Feb; 12(5):905-14. PubMed ID: 4568769
    [No Abstract]   [Full Text] [Related]  

  • 12. Dependence of the fluorescence quantum yield of complexes of acriflavine with tRNA on its structure.
    Borisova OF; Potapov AP; Surovaya AN; Trubitsin SN; Vol'kenshtein MV
    Mol Biol; 1974 Jan; 7(4):411-7. PubMed ID: 4824808
    [No Abstract]   [Full Text] [Related]  

  • 13. Properties of a dimer of tRNA I Tyr 1 (Escherichia coli).
    Yang SK; Söll DG; Crothers DM
    Biochemistry; 1972 Jun; 11(12):2311-20. PubMed ID: 4555033
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanism of discrimination between cognate and non-cognate tRNAs by phenylalanyl-tRNA synthetase from yeast.
    Krauss G; Riesner D; Maass G
    Eur J Biochem; 1976 Sep; 68(1):81-93. PubMed ID: 9288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative study of the ionic interactions between yeast tRNA-Val and tRNA-Phe and their cognate aminoacyl-tRNA ligases.
    Bonnet J; Renaud M; Raffin JP; Remy P
    FEBS Lett; 1975 May; 53(2):154-8. PubMed ID: 1095410
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of abnormal base ionizations on Mg2 plus binding to transfer ribonucleic acid as studied by a fluorescent probe.
    Lynch DC; Schimmel PR
    Biochemistry; 1974 Apr; 13(9):1852-61. PubMed ID: 4209166
    [No Abstract]   [Full Text] [Related]  

  • 17. [Amino-acylation of Escherichia coli tRNA-1-Val by phenylalanine-tRNA synthetase of yeast].
    Taglang R; Waller JP; Befort N; Fasiolo F
    Eur J Biochem; 1970 Feb; 12(3):550-7. PubMed ID: 4314880
    [No Abstract]   [Full Text] [Related]  

  • 18. Detection of ligand-induced conformational changes in phenylalanyl-tRNA synthetase of Escherichia coli K10 by laser light scattering.
    Holler E; Wang CC; Ford NC
    Biochemistry; 1981 Feb; 20(4):861-7. PubMed ID: 7011376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of acyl transfer ribonucleic acid complexes of Escherichia coli phenylalanyl-tRNA synthetase. A conformational change is rate limiting in catalysis.
    Baltzinger M; Holler E
    Biochemistry; 1982 May; 21(10):2460-7. PubMed ID: 7046786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of amino acid structure, ionic strength, and magnesium ion concentration on rates of nonenzymic hydrolysis of aminoacyl transfer ribonucleic acid.
    Strickland JE; Jacobson KB
    Biochemistry; 1972 Jun; 11(12):2321-3. PubMed ID: 4260429
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.