These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 9134419)

  • 1. Identification of two novel conserved amino acid residues in eukaryotic sialyltransferases: implications for their mechanism of action.
    Geremia RA; Harduin-Lepers A; Delannoy P
    Glycobiology; 1997 Mar; 7(2):v-vii. PubMed ID: 9134419
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of an acetolactate synthase small subunit gene in two eukaryotes.
    Duggleby RG
    Gene; 1997 May; 190(2):245-9. PubMed ID: 9197540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved amino acid sequences in the bacterial sialyltransferases belonging to Glycosyltransferase family 80.
    Yamamoto T; Ichikawa M; Takakura Y
    Biochem Biophys Res Commun; 2008 Jan; 365(2):340-3. PubMed ID: 17997982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1994, the year of sialyltransferases.
    Harduin-Lepers A; Recchi MA; Delannoy P
    Glycobiology; 1995 Dec; 5(8):741-58. PubMed ID: 8720072
    [No Abstract]   [Full Text] [Related]  

  • 5. Sialylmotifs of sialyltransferases.
    Datta AK; Paulson JC
    Indian J Biochem Biophys; 1997; 34(1-2):157-65. PubMed ID: 9343944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of amino acid substitutions in the sialylmotifs on molecular expression and enzymatic activities of α2,8-sialyltransferases ST8Sia-I and ST8Sia-VI.
    Takashima S; Matsumoto T; Tsujimoto M; Tsuji S
    Glycobiology; 2013 May; 23(5):603-12. PubMed ID: 23315426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substitution of the N-glycan function in glycosyltransferases by specific amino acids: ST3Gal-V as a model enzyme.
    Uemura S; Kurose T; Suzuki T; Yoshida S; Ito M; Saito M; Horiuchi M; Inagaki F; Igarashi Y; Inokuchi J
    Glycobiology; 2006 Mar; 16(3):258-70. PubMed ID: 16306051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A practical approach to reconstruct evolutionary history of animal sialyltransferases and gain insights into the sequence-function relationships of Golgi-glycosyltransferases.
    Petit D; Teppa RE; Petit JM; Harduin-Lepers A
    Methods Mol Biol; 2013; 1022():73-97. PubMed ID: 23765655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycoprotein sialyltransferases in eucaryotic cells.
    Broquet P; Baubichon-Cortay H; George P; Louisot P
    Int J Biochem; 1991; 23(4):385-9. PubMed ID: 2015947
    [No Abstract]   [Full Text] [Related]  

  • 10. Conserved domains and evolution of secreted phospholipases A(2).
    Nevalainen TJ; Cardoso JC; Riikonen PT
    FEBS J; 2012 Feb; 279(4):636-49. PubMed ID: 22177112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical characterization of a Neisseria meningitidis polysialyltransferase reveals novel functional motifs in bacterial sialyltransferases.
    Freiberger F; Claus H; Günzel A; Oltmann-Norden I; Vionnet J; Mühlenhoff M; Vogel U; Vann WF; Gerardy-Schahn R; Stummeyer K
    Mol Microbiol; 2007 Sep; 65(5):1258-75. PubMed ID: 17662040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prokaryotic orthologues of mitochondrial alternative oxidase and plastid terminal oxidase.
    McDonald AE; Amirsadeghi S; Vanlerberghe GC
    Plant Mol Biol; 2003 Dec; 53(6):865-76. PubMed ID: 15082931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes.
    Harduin-Lepers A; Petit D; Mollicone R; Delannoy P; Petit JM; Oriol R
    BMC Evol Biol; 2008 Sep; 8():258. PubMed ID: 18811928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive analysis of glycosyltransferases in eukaryotic genomes for structural and functional characterization of glycans.
    Hashimoto K; Tokimatsu T; Kawano S; Yoshizawa AC; Okuda S; Goto S; Kanehisa M
    Carbohydr Res; 2009 May; 344(7):881-7. PubMed ID: 19327755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease.
    Kasho VN; Smirnova IN; Kaback HR
    J Mol Biol; 2006 May; 358(4):1060-70. PubMed ID: 16574153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DIALIGN: finding local similarities by multiple sequence alignment.
    Morgenstern B; Frech K; Dress A; Werner T
    Bioinformatics; 1998; 14(3):290-4. PubMed ID: 9614273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Arabidopsis thaliana putative sialyltransferase resides in the Golgi apparatus but lacks the ability to transfer sialic acid.
    Daskalova SM; Pah AR; Baluch DP; Lopez LC
    Plant Biol (Stuttg); 2009 May; 11(3):284-99. PubMed ID: 19470101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Sialyltransferase superfamily: structure and function].
    Tsuji S
    Tanpakushitsu Kakusan Koso; 1998 Dec; 43(16 Suppl):2338-48. PubMed ID: 9883657
    [No Abstract]   [Full Text] [Related]  

  • 19. Identification of linkage-specific sequence motifs in sialyltransferases.
    Patel RY; Balaji PV
    Glycobiology; 2006 Feb; 16(2):108-16. PubMed ID: 16207893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SANTA domain: a novel conserved protein module in Eukaryota with potential involvement in chromatin regulation.
    Zhang D; Martyniuk CJ; Trudeau VL
    Bioinformatics; 2006 Oct; 22(20):2459-62. PubMed ID: 16877755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.