These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9134450)

  • 21. Development switch in neural circuitry underlying odor-malaise learning.
    Shionoya K; Moriceau S; Lunday L; Miner C; Roth TL; Sullivan RM
    Learn Mem; 2006; 13(6):801-8. PubMed ID: 17101877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMDA receptor activation and early olfactory learning.
    Lincoln J; Coopersmith R; Harris EW; Cotman CW; Leon M
    Brain Res; 1988 Apr; 467(2):309-12. PubMed ID: 2897868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of norepinephrine in the expression of learned olfactory neurobehavioral responses in infant rats.
    Sullivan RM; Wilson DA
    Psychobiology (Austin, Tex); 1991; 19(4):308-312. PubMed ID: 18172513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuroethology of olfactory preference development.
    Leon M
    J Neurobiol; 1992 Dec; 23(10):1557-73. PubMed ID: 1487749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ontogeny of the enhanced fetal-ethanol-induced behavioral and neurophysiologic olfactory response to ethanol odor.
    Eade AM; Sheehe PR; Youngentob SL
    Alcohol Clin Exp Res; 2010 Feb; 34(2):206-13. PubMed ID: 19951301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Early odor preference learning in the rat: bidirectional effects of cAMP response element-binding protein (CREB) and mutant CREB support a causal role for phosphorylated CREB.
    Yuan Q; Harley CW; Darby-King A; Neve RL; McLean JH
    J Neurosci; 2003 Jun; 23(11):4760-5. PubMed ID: 12805315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neurobehavioral responses of neonatal rats to previously experienced odors of different concentrations.
    Carmi O; Leon M
    Brain Res Dev Brain Res; 1991 Dec; 64(1-2):43-6. PubMed ID: 1786647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Consolidation and expression of a shock-induced odor preference in rat pups is facilitated by opioids.
    Roth TL; Sullivan RM
    Physiol Behav; 2003 Jan; 78(1):135-42. PubMed ID: 12536020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of c-Fos gene expression in the rat olfactory bulb during olfactory learning.
    Solov'eva NA; Lagutina LV; Antonova LV; Anokhin KV
    Neurosci Behav Physiol; 2007 Sep; 37(7):697-704. PubMed ID: 17763989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms underlying early odor preference learning in rats.
    Yuan Q; Shakhawat AM; Harley CW
    Prog Brain Res; 2014; 208():115-56. PubMed ID: 24767481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Odor preference learning and memory modify GluA1 phosphorylation and GluA1 distribution in the neonate rat olfactory bulb: testing the AMPA receptor hypothesis in an appetitive learning model.
    Cui W; Darby-King A; Grimes MT; Howland JG; Wang YT; McLean JH; Harley CW
    Learn Mem; 2011; 18(5):283-91. PubMed ID: 21498562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isoproterenol increases CREB phosphorylation and olfactory nerve-evoked potentials in normal and 5-HT-depleted olfactory bulbs in rat pups only at doses that produce odor preference learning.
    Yuan Q; Harley CW; Bruce JC; Darby-King A; McLean JH
    Learn Mem; 2000; 7(6):413-21. PubMed ID: 11112800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prenatal stress produces sex differences in nest odor preference.
    de Souza MA; Szawka RE; Centenaro LA; Diehl LA; Lucion AB
    Physiol Behav; 2012 Feb; 105(3):850-5. PubMed ID: 22037198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Associative Processes in Early Olfactory Preference Acquisition: Neural and Behavioral Consequences.
    Sullivan RM; Wilson DA; Leon M
    Psychobiology (Austin, Tex); 1989; 17(1):29-33. PubMed ID: 17572798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual circuitry for odor-shock conditioning during infancy: corticosterone switches between fear and attraction via amygdala.
    Moriceau S; Wilson DA; Levine S; Sullivan RM
    J Neurosci; 2006 Jun; 26(25):6737-48. PubMed ID: 16793881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 5-HT2 receptor involvement in conditioned olfactory learning in the neonate rat pup.
    McLean JH; Darby-King A; Hodge E
    Behav Neurosci; 1996 Dec; 110(6):1426-34. PubMed ID: 8986343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neonatal activation of alcohol-related prenatal memories: impact on the first suckling response.
    Abate P; Varlinskaya EI; Cheslock SJ; Spear NE; Molina JC
    Alcohol Clin Exp Res; 2002 Oct; 26(10):1512-22. PubMed ID: 12394284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localized changes in olfactory bulb morphology associated with early olfactory learning.
    Woo CC; Coopersmith R; Leon M
    J Comp Neurol; 1987 Sep; 263(1):113-25. PubMed ID: 3667967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of the cyclic AMP response element-binding protein signaling pathway in the olfactory bulb is required for the acquisition of olfactory aversive learning in young rats.
    Zhang JJ; Okutani F; Inoue S; Kaba H
    Neuroscience; 2003; 117(3):707-13. PubMed ID: 12617974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Olfactory association learning and brain-derived neurotrophic factor in an animal model of early deprivation.
    Zimmerberg B; Foote HE; Van Kempen TA
    Dev Psychobiol; 2009 May; 51(4):333-44. PubMed ID: 19308959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.