These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9134450)

  • 61. Changes in neurotransmitter release in the main olfactory bulb following an olfactory conditioning procedure in mice.
    Brennan PA; Schellinck HM; de la Riva C; Kendrick KM; Keverne EB
    Neuroscience; 1998 Dec; 87(3):583-90. PubMed ID: 9758225
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Facilitatory effect of ritanserin is mediated by dopamine D(1) receptors on olfactory learning in young rats.
    Zhang JJ; Okutani F; Yagi F; Inoue S; Kaba H
    Dev Psychobiol; 2000 Dec; 37(4):246-52. PubMed ID: 11084606
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mitral cell beta1 and 5-HT2A receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb.
    Yuan Q; Harley CW; McLean JH
    Learn Mem; 2003; 10(1):5-15. PubMed ID: 12551959
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Common properties between synaptic plasticity in the main olfactory bulb and olfactory learning in young rats.
    Zhang JJ; Okutani F; Huang GZ; Taniguchi M; Murata Y; Kaba H
    Neuroscience; 2010 Sep; 170(1):259-67. PubMed ID: 20558253
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Alcohol odor elicits appetitive facial expressions in human neonates prenatally exposed to the drug.
    Faas AE; March SM; Moya PR; Molina JC
    Physiol Behav; 2015 Sep; 148():78-86. PubMed ID: 25707382
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Olfactory associative conditioning in infant rats with brain stimulation as reward. I. Neurobehavioral consequences.
    Wilson DA; Sullivan RM
    Brain Res Dev Brain Res; 1990 May; 53(2):215-21. PubMed ID: 2357795
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Olfactory learning in the rat immediately after birth: Unique salience of first odors.
    Miller SS; Spear NE
    Dev Psychobiol; 2009 Sep; 51(6):488-504. PubMed ID: 19582793
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Neurobiology of associative learning in the neonate: early olfactory learning.
    Wilson DA; Sullivan RM
    Behav Neural Biol; 1994 Jan; 61(1):1-18. PubMed ID: 7907468
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A learned odor decreases the number of Fos-immunopositive granule cells in the olfactory bulb of young rats.
    Woo CC; Oshita MH; Leon M
    Brain Res; 1996 Apr; 716(1-2):149-56. PubMed ID: 8738231
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Maternal attenuation of hypothalamic paraventricular nucleus norepinephrine switches avoidance learning to preference learning in preweanling rat pups.
    Shionoya K; Moriceau S; Bradstock P; Sullivan RM
    Horm Behav; 2007 Sep; 52(3):391-400. PubMed ID: 17675020
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Amelioration of fetal alcohol-related neurodevelopmental disorders in rats: exploring pharmacological and environmental treatments.
    Hannigan JH; Berman RF
    Neurotoxicol Teratol; 2000; 22(1):103-11. PubMed ID: 10642119
    [TBL] [Abstract][Full Text] [Related]  

  • 72. α7-Nicotinic acetylcholine receptor: role in early odor learning preference in mice.
    Hellier JL; Arevalo NL; Smith L; Xiong KN; Restrepo D
    PLoS One; 2012; 7(4):e35251. PubMed ID: 22514723
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mapping of Learned Odor-Induced Motivated Behaviors in the Mouse Olfactory Tubercle.
    Murata K; Kanno M; Ieki N; Mori K; Yamaguchi M
    J Neurosci; 2015 Jul; 35(29):10581-99. PubMed ID: 26203152
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Differential involvement of dopamine in the anterior and posterior parts of the dorsal striatum in latent inhibition.
    Jeanblanc J; Hoeltzel A; Louilot A
    Neuroscience; 2003; 118(1):233-41. PubMed ID: 12676153
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fetal nicotine exposure increases preference for nicotine odor in early postnatal and adolescent, but not adult, rats.
    Mantella NM; Kent PF; Youngentob SL
    PLoS One; 2013; 8(12):e84989. PubMed ID: 24358374
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Odor specificity of the enhanced neural response following early odor experience in rats.
    Coopersmith R; Henderson SR; Leon M
    Brain Res; 1986 Jun; 392(1-2):191-7. PubMed ID: 3708377
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A lateralized odor learning model in neonatal rats for dissecting neural circuitry underpinning memory formation.
    Fontaine CJ; Mukherjee B; Morrison GL; Yuan Q
    J Vis Exp; 2014 Aug; (90):e51808. PubMed ID: 25177826
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Experience modifies olfactory acuity: acetylcholine-dependent learning decreases behavioral generalization between similar odorants.
    Fletcher ML; Wilson DA
    J Neurosci; 2002 Jan; 22(2):RC201. PubMed ID: 11784813
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Brain activation associated to olfactory conditioned same-sex partner preference in male rats.
    Coria-Avila GA; Cibrian-Llanderal T; Díaz-Estrada VX; García LI; Toledo-Cárdenas R; Pfaus JG; Manzo J
    Horm Behav; 2018 Mar; 99():50-56. PubMed ID: 29458055
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Olfactory bulb encoding during learning under anesthesia.
    Nicol AU; Sanchez-Andrade G; Collado P; Segonds-Pichon A; Kendrick KM
    Front Behav Neurosci; 2014; 8():193. PubMed ID: 24926241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.