BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9134732)

  • 1. Application of solid-phase extraction to the preconcentration of metallothionein and metals from physiological fluids.
    Kabziński AK
    J Chromatogr A; 1997 Apr; 766(1-2):121-31. PubMed ID: 9134732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of covalent affinity chromatography with thiol-disulphide interchange for determination of environmental exposition to heavy metals based on the quantitative determination of Zn-thionein from physiological human fluids by indirect method based on analysis of metal contents.
    Kabziński AK
    Biomed Chromatogr; 1998; 12(5):281-90. PubMed ID: 9787900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative determination of Cu-thionein from human fluids with application of solid-phase extraction on covalent affinity chromatography with thiol-disulphide interchange support.
    Kabziński AK
    Biomed Chromatogr; 2000 May; 14(3):160-5. PubMed ID: 10850619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The determination of environmental and industrial exposure to heavy metals based on the quantitative isolation of metallothionein from human fluids, with application of covalent affinity chromatography with thiol-disulphide interchange gel as a solid-phase extraction support.
    Kabziński AK
    Talanta; 1998 Jun; 46(2):335-46. PubMed ID: 18967155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of affinity chromatography for quantitative determination of metallothionein in physiological fluids by an indirect method based on analysis of metal contents.
    Kabziński AK; Takagi T
    Biomed Chromatogr; 1995; 9(3):123-9. PubMed ID: 7655299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of covalent affinity chromatography with thiol-disulphide interchange for determination of environmental exposure to heavy metals based on the quantitative isolation of Cd-thionein from human breast milk.
    Kabziński AK
    Biomed Chromatogr; 1998; 12(4):217-25. PubMed ID: 9667026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal composition of human hepatic and renal metallothionein.
    Orłowski C; Piotrowski JK
    Biol Trace Elem Res; 1998 Nov; 65(2):133-41. PubMed ID: 9881517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and quantitation of metallothioneins by high-performance liquid chromatography coupled with atomic absorption spectrophotometry.
    Lehman LD; Klaassen CD
    Anal Biochem; 1986 Mar; 153(2):305-14. PubMed ID: 3706713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo-folded metal-metallothionein 3 complexes reveal the Cu-thionein rather than Zn-thionein character of this brain-specific mammalian metallothionein.
    Artells E; Palacios O; Capdevila M; Atrian S
    FEBS J; 2014 Mar; 281(6):1659-78. PubMed ID: 24479872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium, copper, and zinc excretion and their binding to metallothionein in urine of cadmium exposed rats.
    Suzuki Y; Yoshikawa H
    J Toxicol Environ Health; 1981 Sep; 8(3):479-87. PubMed ID: 7345169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent metal-binding features of recombinant metallothioneins convergently draw a step gradation between Zn- and Cu-thioneins.
    Bofill R; Capdevila M; Atrian S
    Metallomics; 2009; 1(3):229-34. PubMed ID: 21305119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular dichroism of metallothioneins. A structural approach.
    Rupp H; Weser U
    Biochim Biophys Acta; 1978 Mar; 533(1):209-26. PubMed ID: 25087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preconcentration and solid phase extraction method for the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples using activated carbon by FAAS.
    Kiran K; Suresh Kumar K; Suvardhan K; Janardhanam K; Chiranjeevi P
    J Hazard Mater; 2007 Aug; 147(1-2):15-20. PubMed ID: 17316981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-specific copper accumulation, zinc levels, induction, and purification of metallothionein in freshwater crab Sinopotamon henanense exposed to subacute waterborne copper.
    Ma W; He Y; Yan T; Wang L
    Environ Toxicol; 2014 Apr; 29(4):407-17. PubMed ID: 22422559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential effect of metallothionein 2A -5A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels.
    Kayaaltı Z; Aliyev V; Söylemezoğlu T
    Toxicol Appl Pharmacol; 2011 Oct; 256(1):1-7. PubMed ID: 21767559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-dependent properties of metallothionein. Replacement in vitro of zinc in zinc-thionein with copper.
    Suzuki KT; Maitani T
    Biochem J; 1981 Nov; 199(2):289-95. PubMed ID: 7340805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unravelling the mechanistic details of metal binding to mammalian metallothioneins from stoichiometric, kinetic, and binding affinity data.
    Scheller JS; Irvine GW; Stillman MJ
    Dalton Trans; 2018 Mar; 47(11):3613-3637. PubMed ID: 29431781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High yield expression and single step purification of human thionein/metallothionein.
    Hong S; Toyama M; Maret W; Murooka Y
    Protein Expr Purif; 2001 Feb; 21(1):243-50. PubMed ID: 11162412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of hedgehog liver metallothioneins.
    Pan A; Tie F; Duan Z; Ma H; Li L; Ru B
    Biomed Chromatogr; 1993; 7(2):94-8. PubMed ID: 8485382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism.
    Krężel A; Maret W
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28598392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.