These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Firing activity and postsynaptic properties of morphologically identified neurons of ventral oral pontine reticular nucleus. Núñez A; Rodrigo-Angulo ML; De Andrés I; Reinoso-Suárez F Neuroscience; 2002; 115(4):1165-75. PubMed ID: 12453488 [TBL] [Abstract][Full Text] [Related]
4. Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Leonard CS; Llinás R Neuroscience; 1994 Mar; 59(2):309-30. PubMed ID: 8008195 [TBL] [Abstract][Full Text] [Related]
5. Electrophysiological characterization of neurons in the dorsolateral pontine rapid-eye-movement sleep induction zone of the rat: Intrinsic membrane properties and responses to carbachol and orexins. Brown RE; Winston S; Basheer R; Thakkar MM; McCarley RW Neuroscience; 2006 Dec; 143(3):739-55. PubMed ID: 17008019 [TBL] [Abstract][Full Text] [Related]
7. Muscarinic inhibition of two potassium currents in guinea-pig prevertebral neurons: differentiation by extracellular cesium. Coggan JS; Purnyn SL; Knoper SR; Kreulen DL Neuroscience; 1994 Mar; 59(2):349-61. PubMed ID: 8008197 [TBL] [Abstract][Full Text] [Related]
8. Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem. Banks MI; Pearce RA; Smith PH J Neurophysiol; 1993 Oct; 70(4):1420-32. PubMed ID: 7506755 [TBL] [Abstract][Full Text] [Related]
9. Effects of pedunculopontine nucleus (PPN) stimulation on caudal pontine reticular formation (PnC) neurons in vitro. Homma Y; Skinner RD; Garcia-Rill E J Neurophysiol; 2002 Jun; 87(6):3033-47. PubMed ID: 12037206 [TBL] [Abstract][Full Text] [Related]
10. Muscarinic agonists activate an inwardly rectifying potassium conductance in medial pontine reticular formation neurons of the rat in vitro. Gerber U; Stevens DR; McCarley RW; Greene RW J Neurosci; 1991 Dec; 11(12):3861-7. PubMed ID: 1744694 [TBL] [Abstract][Full Text] [Related]
11. Muscarinic modulation of a transient K+ conductance in rat neostriatal neurons. Akins PT; Surmeier DJ; Kitai ST Nature; 1990 Mar; 344(6263):240-2. PubMed ID: 2314459 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory action of muscarinic agonists on neurons in the rat laterodorsal tegmental nucleus in vitro. Luebke JI; McCarley RW; Greene RW J Neurophysiol; 1993 Nov; 70(5):2128-35. PubMed ID: 8294974 [TBL] [Abstract][Full Text] [Related]
13. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. Pape HC; Driesang RB J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193 [TBL] [Abstract][Full Text] [Related]
14. Cholinergic responses of morphologically and electrophysiologically characterized neurons of the basolateral complex in rat amygdala slices. Yajeya J; de la Fuente Juan A; Merchan MA; Riolobos AS; Heredia M; Criado JM Neuroscience; 1997 Jun; 78(3):731-43. PubMed ID: 9153654 [TBL] [Abstract][Full Text] [Related]
15. Electrophysiological properties of rat pontine nuclei neurons In vitro. I. Membrane potentials and firing patterns. Schwarz C; Möck M; Thier P J Neurophysiol; 1997 Dec; 78(6):3323-37. PubMed ID: 9405547 [TBL] [Abstract][Full Text] [Related]
16. The identification of the sympathetic neurons innervating the hamster submandibular gland and their electrophysiological membrane properties. Morita M; Suzuki T Bull Tokyo Dent Coll; 2001 Feb; 42(1):15-33. PubMed ID: 11484792 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms for signal transformation in lemniscal auditory thalamus. Tennigkeit F; Schwarz DW; Puil E J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860 [TBL] [Abstract][Full Text] [Related]
18. Different discharge properties of rat facial nucleus motoneurons. Magariños-Ascone C; Núñez A; Delgado-García JM Neuroscience; 1999; 94(3):879-86. PubMed ID: 10579578 [TBL] [Abstract][Full Text] [Related]
19. Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo. Lang EJ; Paré D J Neurophysiol; 1997 Jan; 77(1):353-63. PubMed ID: 9120576 [TBL] [Abstract][Full Text] [Related]
20. Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. Nisenbaum ES; Xu ZC; Wilson CJ J Neurophysiol; 1994 Mar; 71(3):1174-89. PubMed ID: 8201411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]