These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9135110)

  • 41. The periplasmic TorT protein is required for trimethylamine N-oxide reductase gene induction in Escherichia coli.
    Jourlin C; Simon G; Pommier J; Chippaux M; Méjean V
    J Bacteriol; 1996 Feb; 178(4):1219-23. PubMed ID: 8576063
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The structure and function of the histidine-containing phosphotransfer (HPt) signaling domain of the Escherichia coli ArcB sensor.
    Matsushika A; Mizuno T
    J Biochem; 1998 Aug; 124(2):440-5. PubMed ID: 9685739
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The TorRS two component system regulates expression of TMAO reductase in response to high hydrostatic pressure in
    Liu N; Jiang T; Cui WP; Qi XQ; Li XG; Lu Y; Wu LF; Zhang WJ
    Front Microbiol; 2023; 14():1291578. PubMed ID: 38029070
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phosphorylation activity of the response regulator of the two-component signal transduction system AtoS-AtoC in E. coli.
    Lioliou EE; Mimitou EP; Grigoroudis AI; Panagiotidis CH; Panagiotidis CA; Kyriakidis DA
    Biochim Biophys Acta; 2005 Oct; 1725(3):257-68. PubMed ID: 16153782
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The sensory histidine kinases TorS and EvgS tend to form clusters in Escherichia coli cells.
    Sommer E; Koler M; Frank V; Sourjik V; Vaknin A
    PLoS One; 2013; 8(10):e77708. PubMed ID: 24147062
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of the Transporter-Like Sensor Kinase CbrA in Histidine Uptake and Signal Transduction.
    Zhang XX; Gauntlett JC; Oldenburg DG; Cook GM; Rainey PB
    J Bacteriol; 2015 Sep; 197(17):2867-78. PubMed ID: 26148710
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conserved mechanism for sensor phosphatase control of two-component signaling revealed in the nitrate sensor NarX.
    Huynh TN; Noriega CE; Stewart V
    Proc Natl Acad Sci U S A; 2010 Dec; 107(49):21140-5. PubMed ID: 21078995
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Central role of the BvgS receiver as a phosphorylated intermediate in a complex two-component phosphorelay.
    Uhl MA; Miller JF
    J Biol Chem; 1996 Dec; 271(52):33176-80. PubMed ID: 8969172
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amplification of signaling activity of the arc two-component system of Escherichia coli by anaerobic metabolites. An in vitro study with different protein modules.
    Georgellis D; Kwon O; Lin EC
    J Biol Chem; 1999 Dec; 274(50):35950-4. PubMed ID: 10585483
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional dissection of the transmitter module of the histidine kinase NtrB in Escherichia coli.
    Kramer G; Weiss V
    Proc Natl Acad Sci U S A; 1999 Jan; 96(2):604-9. PubMed ID: 9892680
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystallization of a complex between a novel C-terminal transmitter, HPt domain, of the anaerobic sensor kinase ArcB and the chemotaxis response regulator CheY.
    Kato M; Mizuno T; Hakoshima T
    Acta Crystallogr D Biol Crystallogr; 1998 Jan; 54(Pt 1):140-2. PubMed ID: 9761838
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Pseudomonas putida HskA hybrid sensor kinase controls the composition of the electron transport chain.
    Sevilla E; Silva-Jiménez H; Duque E; Krell T; Rojo F
    Environ Microbiol Rep; 2013 Apr; 5(2):291-300. PubMed ID: 23584971
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The multi-step phosphorelay mechanism of unorthodox two-component systems in E. coli realizes ultrasensitivity to stimuli while maintaining robustness to noises.
    Kim JR; Cho KH
    Comput Biol Chem; 2006 Dec; 30(6):438-44. PubMed ID: 17112785
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm.
    Kyriakidis DA; Tiligada E
    Amino Acids; 2009 Sep; 37(3):443-58. PubMed ID: 19198978
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sensor-response regulator interactions in a cross-regulated signal transduction network.
    Huynh TN; Chen LL; Stewart V
    Microbiology (Reading); 2015 Jul; 161(7):1504-15. PubMed ID: 25873583
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Purification and in vitro phosphorylation of Myxococcus xanthus AsgA protein.
    Li Y; Plamann L
    J Bacteriol; 1996 Jan; 178(1):289-92. PubMed ID: 8550431
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The turgor sensor KdpD of Escherichia coli is a homodimer.
    Heermann R; Altendorf K; Jung K
    Biochim Biophys Acta; 1998 Dec; 1415(1):114-24. PubMed ID: 9858704
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro evidence of two-component system phosphorylation between the Mycobacterium tuberculosis TrcR/TrcS proteins.
    Haydel SE; Dunlap NE; Benjamin WH
    Microb Pathog; 1999 Apr; 26(4):195-206. PubMed ID: 10089160
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of in vivo cross-talk between key two-component systems of Escherichia coli.
    Verhamme DT; Arents JC; Postma PW; Crielaard W; Hellingwerf KJ
    Microbiology (Reading); 2002 Jan; 148(Pt 1):69-78. PubMed ID: 11782500
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of the KdpD protein, the sensor kinase of the K(+)-translocating Kdp system of Escherichia coli.
    Voelkner P; Puppe W; Altendorf K
    Eur J Biochem; 1993 Nov; 217(3):1019-26. PubMed ID: 8223625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.