These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. [The effect of the external electric field on Ca2+ transport in the sarcoplasmic reticulum]. Pechatnikov VA; Pletnev VV Biofizika; 1984; 29(3):438-41. PubMed ID: 6087927 [TBL] [Abstract][Full Text] [Related]
8. Permeability of canine cardiac sarcoplasmic reticulum vesicles to K+, Na+, H+, and Cl-. Meissner G; McKinley D J Biol Chem; 1982 Jul; 257(13):7704-11. PubMed ID: 7085644 [TBL] [Abstract][Full Text] [Related]
9. [Study of the energy-dependent distribution of 42K+ between vesicles of the sarcoplasmic reticulum and the medium in the presence of valinomycin]. Usmanov KKh; Zamaraeva MV; Gagel'gans AI; Tashmukhamedov BA Nauchnye Doki Vyss Shkoly Biol Nauki; 1981; (9):19-24. PubMed ID: 7295830 [No Abstract] [Full Text] [Related]
10. Optical probe responses on sarcoplasmic reticulum: oxacarbocyanines as probes of membrane potential. Beeler T; Russell JT; Martonosi A Eur J Biochem; 1979 Apr; 95(3):579-91. PubMed ID: 376313 [TBL] [Abstract][Full Text] [Related]
11. Effects of monovalent cation ionophores on calcium uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles. Louis CF; Fudyma G; Nash-Adler P; Shigekawa M; Katz AM FEBS Lett; 1978 Sep; 93(1):61-4. PubMed ID: 81144 [No Abstract] [Full Text] [Related]
12. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradient on Ca2+ uptake. Ueno T; Sekine T J Biochem; 1981 Apr; 89(4):1239-46. PubMed ID: 6265434 [TBL] [Abstract][Full Text] [Related]
13. Sodium transport in triads isolated from rabbit skeletal muscle. Donoso P; Hidalgo C J Membr Biol; 2002 Feb; 185(3):257-63. PubMed ID: 11891583 [TBL] [Abstract][Full Text] [Related]
14. BisG10, a K+ channel blocker, affects the calcium release channel from skeletal muscle sarcoplasmic reticulum. Allard B; Moutin MJ; Ronjat M FEBS Lett; 1992 Dec; 314(1):81-4. PubMed ID: 1333418 [TBL] [Abstract][Full Text] [Related]
15. The effects of valinomycin on ion movements across the sarcoplasmic reticulum in frog muscle. Kitazawa T; Somlyo AP; Somlyo AV J Physiol; 1984 May; 350():253-68. PubMed ID: 6611398 [TBL] [Abstract][Full Text] [Related]
16. The modification of the unidirectional calcium fluxes of sarcoplasmic reticulum vesicles by monovlent cation ionophroes. Louis CF; Nash-Adler PA; Fudyma G; Shigekawa M; Katz AM Biochim Biophys Acta; 1980 Jul; 599(2):610-22. PubMed ID: 6157411 [TBL] [Abstract][Full Text] [Related]
17. Determination of reflection coefficients for various ions and neutral molecules in sarcoplasmic reticulum vesicles through osmotic volume change studied by stopped flow technique. Kasai M; Kanemasa T; Fukumoto S J Membr Biol; 1979 Dec; 51(3-4):311-24. PubMed ID: 537032 [TBL] [Abstract][Full Text] [Related]
19. [A study of passive Ca2+ flow through the sarcoplasmic reticulum of skeletal muscles. II. Stimulation of passive Ca2+ influx with monovalent cations and anions]. Diadiusha GN; Tugaĭ VA; Zemlianaia NN; Zakharchenko AN Ukr Biokhim Zh (1978); 1989; 61(2):80-5. PubMed ID: 2543109 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of a voltage-dependent cation channel in sarcoplasmic reticulum vesicles by caesium studied by using a potential-sensitive cyanine dye. Yamamoto N; Kasai M Biochim Biophys Acta; 1982 Oct; 692(1):89-96. PubMed ID: 6293561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]