These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 913573)
21. Ca-2+-dependent inhibitory effects of Na+ and K+ on Ca-2+ transport in sarcoplasmic reticulum vesicles. Gattass CR; De Meis L Biochim Biophys Acta; 1975 May; 389(3):506-15. PubMed ID: 804935 [TBL] [Abstract][Full Text] [Related]
22. Ionic permeability of sarcoplasmic reticulum vesicles measured by light scattering method. Kometani T; Kasai M J Membr Biol; 1978 Jul; 41(4):295-308. PubMed ID: 691039 [TBL] [Abstract][Full Text] [Related]
23. A Ca++-dependent and -selective ionophore as part of the Ca++ plus Mg++-dependent adenosinetriphosphatase of sarcoplasmic reticulum. Shamoo AE; MacLennan DH Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3522-6. PubMed ID: 4279408 [TBL] [Abstract][Full Text] [Related]
24. [A study of passive Ca2+ flow through the sarcoplasmic reticulum of skeletal muscles. I. Passive Ca2+ efflux from vesicle membranes]. Tugaĭ VA; Diadiusha GP; Zakharchenko AN; Zemlianaia NN Ukr Biokhim Zh (1978); 1989; 61(2):75-9. PubMed ID: 2728117 [TBL] [Abstract][Full Text] [Related]
25. [Effect of gradients of monovalent cations on active transport of Ca2+ in the sarcoplasmic reticulum and proteoliposomes]. Tugaĭ VA; Diadiusha GP; Usatiuk PV; Zemlianaia NN Ukr Biokhim Zh (1978); 1988; 60(1):69-74. PubMed ID: 3363678 [TBL] [Abstract][Full Text] [Related]
26. Fluorescence changes of the potential-sensitive merocyanine 540 during Ca transport in sarcoplasmic reticulum. Haeyaert P; Verdonck F; Wuytack F Arch Int Pharmacodyn Ther; 1980 Apr; 244(2):333-5. PubMed ID: 7406591 [No Abstract] [Full Text] [Related]
27. On the effect of lysophosphatidylcholine, platelet activating factor and other surfactants on calcium permeability in sarcoplasmic reticulum vesicles. Teruel JA; Soler F; Gómez-Fernández JC Chem Phys Lipids; 1991 Aug; 59(1):1-7. PubMed ID: 1790577 [TBL] [Abstract][Full Text] [Related]
28. [Effect of valinomycin on structural and functional transitions in sarcoplasmic reticulum membranes]. Vladimirov IuA; Sergeeva NS; Rubtsov BV; Klebanov GI Biofizika; 1978; 23(1):165-7. PubMed ID: 146520 [TBL] [Abstract][Full Text] [Related]
29. Evidence for a calcium-gated cation channel in sarcoplasmic reticulum vesicles. Bennett N; Dupont Y FEBS Lett; 1981 Jun; 128(2):269-74. PubMed ID: 6266873 [No Abstract] [Full Text] [Related]
30. Electron probe analysis of calcium compartments in cryo sections of smooth and striated muscles. Somlyo AP; Somlyo AV; Shuman H; Sloane B; Scarpa A Ann N Y Acad Sci; 1978 Apr; 307():523-44. PubMed ID: 360948 [No Abstract] [Full Text] [Related]
31. Recent trends in membrane transport research. Wilbrandt W Life Sci; 1975 Jan; 16(2):201-12. PubMed ID: 1089187 [No Abstract] [Full Text] [Related]
32. Depolarization induced calcium release from sarcoplasmic reticulum membrane fragments by changing ionic environment. Kasai M; Miyamoto H FEBS Lett; 1973 Aug; 34(2):299-301. PubMed ID: 4355916 [No Abstract] [Full Text] [Related]
34. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. II. H+ ejection during Ca2+ uptake. Ueno T; Sekine T J Biochem; 1981 Apr; 89(4):1247-52. PubMed ID: 6265435 [TBL] [Abstract][Full Text] [Related]
35. Valinomycin-stimulated 86 rubidium transport and efflux from lens. Kresca L; Cotlier E Invest Ophthalmol; 1974 Apr; 13(4):310-2. PubMed ID: 4818817 [No Abstract] [Full Text] [Related]
36. Calcium transport and release by the sarcoplasmic reticulum. Katz AM; Shigekawa M; Repke DI; Hasselbach W Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():205-12. PubMed ID: 22900 [TBL] [Abstract][Full Text] [Related]
37. Energized transport of potassium ions in the absence of valinomycin by cytochrome c oxidase-reconstituted vesicles. Singh AP; Nicholls P Biochim Biophys Acta; 1984 Nov; 777(2):194-200. PubMed ID: 6091755 [TBL] [Abstract][Full Text] [Related]
38. Capillary, interstitial, and cell membrane barriers to blood-tissue transport of potassium and rubidium in mammalian skeletal muscle. Sheehan RM; Renkin EM Circ Res; 1972 May; 30(5):588-607. PubMed ID: 5026760 [No Abstract] [Full Text] [Related]
39. [Proof of the possibility of univalent cation active transport in rat liver mitochondria]. Skul'skiĭ IA; Glazunov VV; Savina MV Dokl Akad Nauk SSSR; 1979; 246(2):504-8. PubMed ID: 582434 [No Abstract] [Full Text] [Related]
40. Energy coupling of facilitated transport of inorganic ions in Rhodopseudomonas sphaeroides. Hellingwerf KJ; Friedberg I; Lolkema JS; Michels PA; Konings WN J Bacteriol; 1982 Jun; 150(3):1183-91. PubMed ID: 6281239 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]