These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 9136619)
1. [Proline biosynthesis and water stress tolerance in plants]. Yoshiba Y; Kiyosue T; Shinozaki K; Shinozaki K Tanpakushitsu Kakusan Koso; 1997 May; 42(6):842-55. PubMed ID: 9136619 [No Abstract] [Full Text] [Related]
2. Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Peng Z; Lu Q; Verma DP Mol Gen Genet; 1996 Dec; 253(3):334-41. PubMed ID: 9003320 [TBL] [Abstract][Full Text] [Related]
3. Regulation of levels of proline as an osmolyte in plants under water stress. Yoshiba Y; Kiyosue T; Nakashima K; Yamaguchi-Shinozaki K; Shinozaki K Plant Cell Physiol; 1997 Oct; 38(10):1095-102. PubMed ID: 9399433 [TBL] [Abstract][Full Text] [Related]
4. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Abrahám E; Rigó G; Székely G; Nagy R; Koncz C; Szabados L Plant Mol Biol; 2003 Feb; 51(3):363-72. PubMed ID: 12602867 [TBL] [Abstract][Full Text] [Related]
5. Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Savouré A; Hua XJ; Bertauche N; Van Montagu M; Verbruggen N Mol Gen Genet; 1997 Mar; 254(1):104-9. PubMed ID: 9108297 [TBL] [Abstract][Full Text] [Related]
6. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. Miller G; Honig A; Stein H; Suzuki N; Mittler R; Zilberstein A J Biol Chem; 2009 Sep; 284(39):26482-92. PubMed ID: 19635803 [TBL] [Abstract][Full Text] [Related]
7. Does proline accumulation play an active role in stress-induced growth reduction? Maggio A; Miyazaki S; Veronese P; Fujita T; Ibeas JI; Damsz B; Narasimhan ML; Hasegawa PM; Joly RJ; Bressan RA Plant J; 2002 Sep; 31(6):699-712. PubMed ID: 12220262 [TBL] [Abstract][Full Text] [Related]
8. Metabolite repression and inducer exclusion in the proline utilization gene cluster of Aspergillus nidulans. Cubero B; Gómez D; Scazzocchio C J Bacteriol; 2000 Jan; 182(1):233-5. PubMed ID: 10613888 [TBL] [Abstract][Full Text] [Related]
9. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Hu CA; Delauney AJ; Verma DP Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9354-8. PubMed ID: 1384052 [TBL] [Abstract][Full Text] [Related]
10. Stress-responsive and developmental regulation of Delta(1)-pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana. Yoshiba Y; Nanjo T; Miura S; Yamaguchi-Shinozaki K; Shinozaki K Biochem Biophys Res Commun; 1999 Aug; 261(3):766-72. PubMed ID: 10441499 [TBL] [Abstract][Full Text] [Related]
11. Regulation of proline catabolism in Pseudomonas aeruginosa PAO. Meile L; Soldati L; Leisinger T Arch Microbiol; 1982 Aug; 132(2):189-93. PubMed ID: 6812528 [TBL] [Abstract][Full Text] [Related]
12. The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Deuschle K; Funck D; Forlani G; Stransky H; Biehl A; Leister D; van der Graaff E; Kunze R; Frommer WB Plant Cell; 2004 Dec; 16(12):3413-25. PubMed ID: 15548746 [TBL] [Abstract][Full Text] [Related]
13. Subcellular compartmentation in control of converging pathways for proline and arginine metabolism in Saccharomyces cerevisiae. Brandriss MC; Magasanik B J Bacteriol; 1981 Mar; 145(3):1359-64. PubMed ID: 7009582 [TBL] [Abstract][Full Text] [Related]
15. Regulation of proline utilization in Salmonella typhimurium: a membrane-associated dehydrogenase binds DNA in vitro. Ostrovsky de Spicer P; O'Brien K; Maloy S J Bacteriol; 1991 Jan; 173(1):211-9. PubMed ID: 1987118 [TBL] [Abstract][Full Text] [Related]
16. Purification of the putA gene product. A bifunctional membrane-bound protein from Salmonella typhimurium responsible for the two-step oxidation of proline to glutamate. Menzel R; Roth J J Biol Chem; 1981 Sep; 256(18):9755-61. PubMed ID: 6270100 [TBL] [Abstract][Full Text] [Related]
17. DNA sequence of the putA gene from Salmonella typhimurium: a bifunctional membrane-associated dehydrogenase that binds DNA. Allen SW; Senti-Willis A; Maloy SR Nucleic Acids Res; 1993 Apr; 21(7):1676. PubMed ID: 8479928 [No Abstract] [Full Text] [Related]
18. Primary structure of the nuclear PUT2 gene involved in the mitochondrial pathway for proline utilization in Saccharomyces cerevisiae. Krzywicki KA; Brandriss MC Mol Cell Biol; 1984 Dec; 4(12):2837-42. PubMed ID: 6098824 [TBL] [Abstract][Full Text] [Related]
19. Sequence analysis identifies the proline dehydrogenase and delta 1-pyrroline-5-carboxylate dehydrogenase domains of the multifunctional Escherichia coli PutA protein. Ling M; Allen SW; Wood JM J Mol Biol; 1994 Nov; 243(5):950-6. PubMed ID: 7966312 [TBL] [Abstract][Full Text] [Related]
20. Database cloning human delta 1-pyrroline-5-carboxylate synthetase (P5CS) cDNA: a bifunctional enzyme catalyzing the first 2 steps in proline biosynthesis. Aral B; Schlenzig JS; Liu G; Kamoun P C R Acad Sci III; 1996 Mar; 319(3):171-8. PubMed ID: 8761662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]