These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 9136763)

  • 41. Anesthetized- and awake-patched whole-cell recordings in freely moving rats using UV-cured collar-based electrode stabilization.
    Lee D; Shtengel G; Osborne JE; Lee AK
    Nat Protoc; 2014 Dec; 9(12):2784-95. PubMed ID: 25375992
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Feedback controlled piezo-motor microdrive for accurate electrode positioning in chronic single unit recording in behaving mice.
    Yang S; Cho J; Lee S; Park K; Kim J; Huh Y; Yoon ES; Shin HS
    J Neurosci Methods; 2011 Feb; 195(2):117-27. PubMed ID: 20868709
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Miniature carrier with six independently moveable electrodes for recording of multiple single-units in the cerebellar cortex of awake rats.
    Vos BP; Wijnants M; Taeymans S; De Schutter E
    J Neurosci Methods; 1999 Dec; 94(1):19-26. PubMed ID: 10638812
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A procedure for implanting organized arrays of microwires for single-unit recordings in awake, behaving animals.
    Barker DJ; Root DH; Coffey KR; Ma S; West MO
    J Vis Exp; 2014 Feb; (84):e51004. PubMed ID: 24561332
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Techniques for long-term multisite neuronal ensemble recordings in behaving animals.
    Kralik JD; Dimitrov DF; Krupa DJ; Katz DB; Cohen D; Nicolelis MA
    Methods; 2001 Oct; 25(2):121-50. PubMed ID: 11812202
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A chronically implantable, hybrid cannula-electrode device for assessing the effects of molecules on electrophysiological signals in freely behaving animals.
    Greger B; Kateb B; Gruen P; Patterson PH
    J Neurosci Methods; 2007 Jul; 163(2):321-5. PubMed ID: 17499854
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Large-Scale Semi-Chronic Microdrive Recording System for Non-Human Primates.
    Dotson NM; Hoffman SJ; Goodell B; Gray CM
    Neuron; 2017 Nov; 96(4):769-782.e2. PubMed ID: 29107523
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multisite electrophysiological recordings by self-assembled loose-patch-like junctions between cultured hippocampal neurons and mushroom-shaped microelectrodes.
    Shmoel N; Rabieh N; Ojovan SM; Erez H; Maydan E; Spira ME
    Sci Rep; 2016 Jun; 6():27110. PubMed ID: 27256971
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Large-scale recording of neuronal ensembles.
    Buzsáki G
    Nat Neurosci; 2004 May; 7(5):446-51. PubMed ID: 15114356
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A combined recording and microiontophoresis technique for input-output analysis of single neurons in the mammalian CNS.
    Gottschaldt KM; Hicks TP; Vahle-Hinz C
    J Neurosci Methods; 1988 Apr; 23(3):233-9. PubMed ID: 3367660
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simultaneous Recordings of Central and Peripheral Bioelectrical Signals in a Freely Moving Rodent.
    Sasaki T; Nishimura Y; Ikegaya Y
    Biol Pharm Bull; 2017; 40(5):711-715. PubMed ID: 28458358
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Miniature microdrive for extracellular recording of neuronal activity in freely moving animals.
    Korshunov VA
    J Neurosci Methods; 1995 Mar; 57(1):77-80. PubMed ID: 7791367
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrophysiological recordings from behaving animals--going beyond spikes.
    Chorev E; Epsztein J; Houweling AR; Lee AK; Brecht M
    Curr Opin Neurobiol; 2009 Oct; 19(5):513-9. PubMed ID: 19735997
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Construction of an Improved Multi-Tetrode Hyperdrive for Large-Scale Neural Recording in Behaving Rats.
    Lu L; Popeney B; Dickman JD; Angelaki DE
    J Vis Exp; 2018 May; (135):. PubMed ID: 29806835
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A lightweight telemetry system for recording neuronal activity in freely behaving small animals.
    Schregardus DS; Pieneman AW; Ter Maat A; Jansen RF; Brouwer TJ; Gahr ML
    J Neurosci Methods; 2006 Jul; 155(1):62-71. PubMed ID: 16490257
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intracellular neuronal recording in awake nonhuman primates.
    Gao L; Wang X
    Nat Protoc; 2020 Nov; 15(11):3615-3631. PubMed ID: 33046899
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Loose-patch-juxtacellular recording in vivo--a method for functional characterization and labeling of neurons in macaque V1.
    Joshi S; Hawken MJ
    J Neurosci Methods; 2006 Sep; 156(1-2):37-49. PubMed ID: 16540174
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Miniature microdrive-headstage assembly for extracellular recording of neuronal activity with high-impedance electrodes in freely moving mice.
    Korshunov VA
    J Neurosci Methods; 2006 Dec; 158(2):179-85. PubMed ID: 16828875
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.