These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 9137202)
21. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. Claes L; Eckert-Hübner K; Augat P J Orthop Res; 2002 Sep; 20(5):1099-105. PubMed ID: 12382978 [TBL] [Abstract][Full Text] [Related]
22. The effect of micromovement on callus formation. Yamaji T; Ando K; Wolf S; Augat P; Claes L J Orthop Sci; 2001; 6(6):571-5. PubMed ID: 11793181 [TBL] [Abstract][Full Text] [Related]
23. Intraarterial protamine sulfate reduces the magnitude of streaming potentials in living canine tibia. Otter MW; Wu DD; Bieber WA; Cochran GV Calcif Tissue Int; 1993 Dec; 53(6):411-5. PubMed ID: 8293355 [TBL] [Abstract][Full Text] [Related]
24. [Callus Distraction in the Treatment of Post-Traumatic Defects of the Femur and Tibia]. Veselý R; Procházka V Acta Chir Orthop Traumatol Cech; 2016; 83(6):388-392. PubMed ID: 28026734 [TBL] [Abstract][Full Text] [Related]
25. Comparative study of healing and remodeling in various bones. Najjar TA; Kahn D J Oral Surg; 1977 May; 35(5):375-9. PubMed ID: 265375 [TBL] [Abstract][Full Text] [Related]
26. Distraction osteogenesis. A comparison of corticotomy techniques. Frierson M; Ibrahim K; Boles M; Boté H; Ganey T Clin Orthop Relat Res; 1994 Apr; (301):19-24. PubMed ID: 8156672 [TBL] [Abstract][Full Text] [Related]
27. Effects of diclofenac on periosteal callus maturation in osteotomy healing in an animal model. Krischak GD; Augat P; Sorg T; Blakytny R; Kinzl L; Claes L; Beck A Arch Orthop Trauma Surg; 2007 Jan; 127(1):3-9. PubMed ID: 16865399 [TBL] [Abstract][Full Text] [Related]
28. Severe Hemorrhagic Shock Leads to a Delayed Fracture Healing and Decreased Bone Callus Strength in a Mouse Model. Bundkirchen K; Macke C; Reifenrath J; Schäck LM; Noack S; Relja B; Naber P; Welke B; Fehr M; Krettek C; Neunaber C Clin Orthop Relat Res; 2017 Nov; 475(11):2783-2794. PubMed ID: 28795328 [TBL] [Abstract][Full Text] [Related]
29. Sex-specific compromised bone healing in female rats might be associated with a decrease in mesenchymal stem cell quantity. Strube P; Mehta M; Baerenwaldt A; Trippens J; Wilson CJ; Ode A; Perka C; Duda GN; Kasper G Bone; 2009 Dec; 45(6):1065-72. PubMed ID: 19679210 [TBL] [Abstract][Full Text] [Related]
30. Correlations between mechanical stress history and tissue differentiation in initial fracture healing. Carter DR; Blenman PR; Beaupré GS J Orthop Res; 1988; 6(5):736-48. PubMed ID: 3404331 [TBL] [Abstract][Full Text] [Related]
31. Streaming potentials in healing, remodeling, and intact cortical bone. MacGinitie LA; Wu DD; Cochran GV J Bone Miner Res; 1993 Nov; 8(11):1323-35. PubMed ID: 8266824 [TBL] [Abstract][Full Text] [Related]
32. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing. Bartnikowski N; Claes LE; Koval L; Glatt V; Bindl R; Steck R; Ignatius A; Schuetz MA; Epari DR Acta Orthop; 2017 Apr; 88(2):217-222. PubMed ID: 27841708 [TBL] [Abstract][Full Text] [Related]
33. Shear movement at the fracture site delays healing in a diaphyseal fracture model. Augat P; Burger J; Schorlemmer S; Henke T; Peraus M; Claes L J Orthop Res; 2003 Nov; 21(6):1011-7. PubMed ID: 14554213 [TBL] [Abstract][Full Text] [Related]
34. [Experimental histopathological studies of electrical callus formation and mechanism of bone healing by direct micro-electrical current]. Kondo J Nihon Seikeigeka Gakkai Zasshi; 1985 Aug; 59(8):803-17. PubMed ID: 4086926 [TBL] [Abstract][Full Text] [Related]
35. Fracture near press-on interlocking enhances callus mineralisation in a sheep midshaft tibia osteotomy model. Gradl G; Herlyn P; Emmerich J; Friebe U; Martin H; Mittlmeier T Injury; 2014 Jan; 45 Suppl 1():S66-70. PubMed ID: 24355198 [TBL] [Abstract][Full Text] [Related]
36. Effect of low-intensity pulsed ultrasound stimulation on callus remodelling in a gap-healing model: evaluation by bone morphometry using three-dimensional quantitative micro-CT. Tobita K; Ohnishi I; Matsumoto T; Ohashi S; Bessho M; Kaneko M; Matsuyama J; Nakamura K J Bone Joint Surg Br; 2011 Apr; 93(4):525-30. PubMed ID: 21464494 [TBL] [Abstract][Full Text] [Related]
37. In vivo axial dynamization of canine tibial fractures using the Securos external skeletal fixation system. Gorman SC; Kraus KH; Keating JH; Tidwell AS; Rand WM; Parkington JD; Boudrieau RJ Vet Comp Orthop Traumatol; 2005; 18(4):199-207. PubMed ID: 16594387 [TBL] [Abstract][Full Text] [Related]
38. Comparison of bone healing, as assessed by computed tomography, following tibial tuberosity advancement in dogs with and without autogenous cancellous bone grafts. James DR; Webster N; White JD; Marchevsky AM; Cashmore RG; Havlicek M; Fearnside S; Black AP N Z Vet J; 2017 Sep; 65(5):270-276. PubMed ID: 28637394 [TBL] [Abstract][Full Text] [Related]
39. Monitoring of Callus Maturation and Measurement of Resistance Rates Using Bioelectrical Impedance for Patients Treated With an External Fixator. Yoshida T; Kim WC; Oka Y; Nakase M; Nishida A; Fujiwara H; Kubo T Orthopedics; 2018 Jan; 41(1):54-58. PubMed ID: 29257188 [TBL] [Abstract][Full Text] [Related]
40. In vivo biomechanical evaluation of a novel angle-stable interlocking nail design in a canine tibial fracture model. Déjardin LM; Cabassu JB; Guillou RP; Villwock M; Guiot LP; Haut RC Vet Surg; 2014 Mar; 43(3):271-81. PubMed ID: 24467692 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]