These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 9137558)

  • 1. Inhibition of the cystic fibrosis transmembrane conductance regulator by ATP-sensitive K+ channel regulators.
    Sheppard DN; Welsh MJ
    Ann N Y Acad Sci; 1993 Dec; 707():275-84. PubMed ID: 9137558
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents.
    Sheppard DN; Welsh MJ
    J Gen Physiol; 1992 Oct; 100(4):573-91. PubMed ID: 1281220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator.
    McNicholas CM; Guggino WB; Schwiebert EM; Hebert SC; Giebisch G; Egan ME
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8083-8. PubMed ID: 8755607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ROMK-cystic fibrosis transmembrane conductance regulator connection: new insights into the relationship between ROMK and cystic fibrosis transmembrane conductance regulator channels.
    Ho K
    Curr Opin Nephrol Hypertens; 1998 Jan; 7(1):49-58. PubMed ID: 9442363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of cystic fibrosis transmembrane conductance regulator alters the responses to hypotonic cell swelling and ATP of Chinese hamster ovary cells.
    Thiele IE; Hug MJ; Hübner M; Greger R
    Cell Physiol Biochem; 1998; 8(1-2):61-74. PubMed ID: 9547020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CFTR, a regulator of channels.
    Kunzelmann K; Schreiber R
    J Membr Biol; 1999 Mar; 168(1):1-8. PubMed ID: 10051684
    [No Abstract]   [Full Text] [Related]  

  • 7. A conditional probability analysis of cystic fibrosis transmembrane conductance regulator gating indicates that ATP has multiple effects during the gating cycle.
    Hennager DJ; Ikuma M; Hoshi T; Welsh MJ
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3594-9. PubMed ID: 11248123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cystic fibrosis transmembrane conductance regulator: a chloride channel with novel regulation.
    Welsh MJ; Anderson MP; Rich DP; Berger HA; Denning GM; Ostedgaard LS; Sheppard DN; Cheng SH; Gregory RJ; Smith AE
    Neuron; 1992 May; 8(5):821-9. PubMed ID: 1375035
    [No Abstract]   [Full Text] [Related]  

  • 9. Cystic fibrosis transmembrane conductance regulator. Structure and function of an epithelial chloride channel.
    Akabas MH
    J Biol Chem; 2000 Feb; 275(6):3729-32. PubMed ID: 10660517
    [No Abstract]   [Full Text] [Related]  

  • 10. Hydrogen Sulfide Facilitates Vaginal Lubrication by Activation of Epithelial ATP-Sensitive K(+) Channels and Cystic Fibrosis Transmembrane Conductance Regulator.
    Sun Q; Huang J; Yue YJ; Xu JB; Jiang P; Yang DL; Zeng Y; Zhou WL
    J Sex Med; 2016 May; 13(5):798-807. PubMed ID: 27114193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP hydrolysis-coupled gating of CFTR chloride channels: structure and function.
    Zou X; Hwang TC
    Biochemistry; 2001 May; 40(19):5579-86. PubMed ID: 11341822
    [No Abstract]   [Full Text] [Related]  

  • 12. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by its R domain.
    Ostedgaard LS; Baldursson O; Welsh MJ
    J Biol Chem; 2001 Mar; 276(11):7689-92. PubMed ID: 11244086
    [No Abstract]   [Full Text] [Related]  

  • 13. Degenerate ABC composite site is stably glued together by trapped ATP.
    Csanády L
    J Gen Physiol; 2010 May; 135(5):395-8. PubMed ID: 20421369
    [No Abstract]   [Full Text] [Related]  

  • 14. Overexpression, purification, and function of first nucleotide-binding fold of cystic fibrosis transmembrane conductance regulator.
    Ko YH; Pedersen PL
    Methods Enzymol; 1998; 292():675-86. PubMed ID: 9711591
    [No Abstract]   [Full Text] [Related]  

  • 15. Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents.
    Cai Z; Lansdell KA; Sheppard DN
    Br J Pharmacol; 1999 Sep; 128(1):108-18. PubMed ID: 10498841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the ROMK channel: interaction of the ROMK with associate proteins.
    Wang W
    Am J Physiol; 1999 Dec; 277(6):F826-31. PubMed ID: 10600928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CFTR is a conductance regulator as well as a chloride channel.
    Schwiebert EM; Benos DJ; Egan ME; Stutts MJ; Guggino WB
    Physiol Rev; 1999 Jan; 79(1 Suppl):S145-66. PubMed ID: 9922379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney.
    Lu M; Leng Q; Egan ME; Caplan MJ; Boulpaep EL; Giebisch GH; Hebert SC
    J Clin Invest; 2006 Mar; 116(3):797-807. PubMed ID: 16470247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structural basis of cystic fibrosis.
    Meng X; Clews J; Martin ER; Ciuta AD; Ford RC
    Biochem Soc Trans; 2018 Oct; 46(5):1093-1098. PubMed ID: 30154098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.