These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 9137824)

  • 1. Dicarbanonaborates in yeast respiration and membrane transport.
    Kotyk A; Lapathitis G
    Biochem Mol Biol Int; 1997 Apr; 41(5):933-40. PubMed ID: 9137824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of the kinetics of secondary active transports in yeast on H(+)-ATPase acidification.
    Kotyk A
    J Membr Biol; 1994 Feb; 138(1):29-35. PubMed ID: 8189429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different sources of acidity in glucose-elicited extracellular acidification in the yeast Saccharomyces cerevisiae.
    Lapathitis G; Kotyk A
    Biochem Mol Biol Int; 1998 Dec; 46(5):973-8. PubMed ID: 9861451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the physiological state of five yeast species on H(+)-ATPase-related processes.
    Kotyk A; Georghiou G
    Folia Microbiol (Praha); 1993; 38(6):467-72. PubMed ID: 7908655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are proton symports in yeast directly linked to H(+)-ATPase acidification?
    Kotyk A; Dvoráková M
    Biochim Biophys Acta; 1992 Mar; 1104(2):293-8. PubMed ID: 1347702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid.
    Holyoak CD; Stratford M; McMullin Z; Cole MB; Crimmins K; Brown AJ; Coote PJ
    Appl Environ Microbiol; 1996 Sep; 62(9):3158-64. PubMed ID: 8795204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanadate inhibition of mitochondrial respiration and H+ ATPase activity in Saccharomyces cerevisiae.
    Henderson GE; Evans IH; Bruce IJ
    Yeast; 1989; 5(1):73-7. PubMed ID: 2522699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The activity of plasma membrane H(+)-ATPase is strongly stimulated during Saccharomyces cerevisiae adaptation to growth under high copper stress, accompanying intracellular acidification.
    Fernandes AR; Sá-Correia I
    Yeast; 2001 Apr; 18(6):511-21. PubMed ID: 11284007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of 2-deoxy-D-glucose and adenine with phosphate anion uptake in yeast.
    Kotyk A
    Folia Microbiol (Praha); 1992; 37(6):401-3. PubMed ID: 1296923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase.
    Piper PW; Ortiz-Calderon C; Holyoak C; Coote P; Cole M
    Cell Stress Chaperones; 1997 Mar; 2(1):12-24. PubMed ID: 9250391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of an intrinsic ATPase inhibitor to the F(1)FoATPase in phosphorylating conditions of yeast mitochondria.
    Iwatsuki H; Lu YM; Yamaguchi K; Ichikawa N; Hashimoto T
    J Biochem; 2000 Oct; 128(4):553-9. PubMed ID: 11011137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical potential and ion transport in vesicles of yeast plasma membrane.
    Calahorra M; Ramírez J; Clemente SM; Peña A
    Biochim Biophys Acta; 1987 May; 899(2):229-38. PubMed ID: 2883994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified plant plasma membrane H(+)-ATPase with improved transport coupling efficiency identified by mutant selection in yeast.
    Baunsgaard L; Venema K; Axelsen KB; Villalba JM; Welling A; Wollenweber B; Palmgren MG
    Plant J; 1996 Sep; 10(3):451-8. PubMed ID: 8811859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two forms of yeast plasma membrane H(+)-ATPase: comparison of yield and effects of inhibitors.
    Lapathitis G; Kotyk A
    Folia Microbiol (Praha); 2000; 45(3):221-3. PubMed ID: 11271804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-sensitive K+ channels in a plasma membrane H+-ATPase mutant of the yeast Saccharomyces cerevisiae.
    Ramirez JA; Vacata V; McCusker JH; Haber JE; Mortimer RK; Owen WG; Lecar H
    Proc Natl Acad Sci U S A; 1989 Oct; 86(20):7866-70. PubMed ID: 2530577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Farnesol-induced generation of reactive oxygen species dependent on mitochondrial transmembrane potential hyperpolarization mediated by F(0)F(1)-ATPase in yeast.
    Machida K; Tanaka T
    FEBS Lett; 1999 Nov; 462(1-2):108-12. PubMed ID: 10580101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of synthesis and activity of yeast transport proteins by metabolic substrates.
    Kotyk A
    Folia Microbiol (Praha); 1994; 39(4):261-4. PubMed ID: 7729762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton translocating ATPase mediated fungicidal activity of a novel complex carbohydrate: CAN-296.
    Ben-Josef AM; Manavathu EK; Platt D; Sobel JD
    Int J Antimicrob Agents; 2000 Feb; 13(4):287-95. PubMed ID: 10755243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of intracellular ATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae.
    Ytting CK; Fuglsang AT; Hiltunen JK; Kastaniotis AJ; Özalp VC; Nielsen LJ; Olsen LF
    Integr Biol (Camb); 2012 Jan; 4(1):99-107. PubMed ID: 22134619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae.
    Carmelo V; Santos H; Sá-Correia I
    Biochim Biophys Acta; 1997 Apr; 1325(1):63-70. PubMed ID: 9106483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.