BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9137835)

  • 1. The large ribosomal protein gene cluster of a cryptomonad plastid: gene organization, sequence and evolutionary implications.
    Wang SL; Liu XQ; Douglas SE
    Biochem Mol Biol Int; 1997 Apr; 41(5):1035-44. PubMed ID: 9137835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cyanelle S10 spc ribosomal protein gene operon from Cyanophora paradoxa.
    Michalowski CB; Pfanzagl B; Löffelhardt W; Bohnert HJ
    Mol Gen Genet; 1990 Nov; 224(2):222-31. PubMed ID: 2126059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the cluster of ribosomal protein genes in the plastid genome of a unicellular red alga Cyanidioschyzon merolae: translocation of the str cluster as an early event in the rhodophyte-chromophyte lineage of plastid evolution.
    Ohta N; Sato N; Nozaki H; Kuroiwa T
    J Mol Evol; 1997 Dec; 45(6):688-95. PubMed ID: 9419246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual organization of a ribosomal protein operon in the plastid genome of Cryptomonas phi: evolutionary considerations.
    Douglas SE
    Curr Genet; 1991 Apr; 19(4):289-94. PubMed ID: 1868578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. rps10, unreported for plastid DNAs, is located on the cyanelle genome of Cyanophora paradoxa and is cotranscribed with the str operon genes.
    Neumann-Spallart C; Jakowitsch J; Kraus M; Brandtner M; Bohnert HJ; Löffelhardt W
    Curr Genet; 1991 Apr; 19(4):313-5. PubMed ID: 1907893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae.
    Douglas SE; Penny SL
    J Mol Evol; 1999 Feb; 48(2):236-44. PubMed ID: 9929392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cyanelle genome of Cyanophora paradoxa, unlike the chloroplast genome, codes for the ribosomal L3 protein.
    Evrard JL; Johnson C; Janssen I; Löffelhardt W; Weil JH; Kuntz M
    Nucleic Acids Res; 1990 Mar; 18(5):1115-9. PubMed ID: 2108429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic depth of S10 and spc operons: cloning and sequencing of a ribosomal protein gene cluster from the extremely thermophilic bacterium Thermotoga maritima.
    Sanangelantoni AM; Bocchetta M; Cammarano P; Tiboni O
    J Bacteriol; 1994 Dec; 176(24):7703-10. PubMed ID: 8002596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eukaryote-eukaryote endosymbioses: insights from studies of a cryptomonad alga.
    Douglas SE
    Biosystems; 1992; 28(1-3):57-68. PubMed ID: 1292667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cotranscription of the S10- and spc-like operons in spinach chloroplasts and identification of three of their gene products.
    Zhou DX; Quigley F; Massenet O; Mache R
    Mol Gen Genet; 1989 Apr; 216(2-3):439-45. PubMed ID: 2747623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cyanelle str operon from Cyanophora paradoxa: sequence analysis and phylogenetic implications.
    Kraus M; Götz M; Löffelhardt W
    Plant Mol Biol; 1990 Oct; 15(4):561-73. PubMed ID: 2129337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Leptospira interrogans S10-spc-alpha operon.
    Zuerner RL; Hartskeerl RA; van de Kemp H; Bal AE
    FEMS Microbiol Lett; 2000 Jan; 182(2):303-8. PubMed ID: 10620683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gene for ribosomal protein L27 is located on the plastid rather than the nuclear genome of the chlorophyll c-containing alga Pleurochrysis carterae.
    Fujiwara S; Kawachi M; Inouye I; Someya J
    Plant Mol Biol; 1994 Jan; 24(1):253-7. PubMed ID: 8111025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes.
    Douglas SE; Murphy CA; Spencer DF; Gray MW
    Nature; 1991 Mar; 350(6314):148-51. PubMed ID: 2005963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and organization of rhodophyte and chromophyte plastid genomes: implications for the ancestry of plastids.
    Shivji MS; Li N; Cattolico RA
    Mol Gen Genet; 1992 Mar; 232(1):65-73. PubMed ID: 1552904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene clusters for ribosomal proteins in the mitochondrial genome of a liverwort, Marchantia polymorpha.
    Takemura M; Oda K; Yamato K; Ohta E; Nakamura Y; Nozato N; Akashi K; Ohyama K
    Nucleic Acids Res; 1992 Jun; 20(12):3199-205. PubMed ID: 1620617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extra-ribosomal function(s) of the plastid ribosomal protein L4 in the expression of ribosomal components in spinach.
    Trifa Y; Lerbs-Mache S
    Mol Gen Genet; 2000 May; 263(4):642-7. PubMed ID: 10852486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A secY homologue is found in the plastid genome of Cryptomonas phi.
    Douglas SE
    FEBS Lett; 1992 Feb; 298(1):93-6. PubMed ID: 1544427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The small subunit of ribulose-1,5-bisphosphate carboxylase is plastid-encoded in the chlorophyll c-containing alga Cryptomonas phi.
    Douglas SE; Durnford DG
    Plant Mol Biol; 1989 Jul; 13(1):13-20. PubMed ID: 2562756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin of red algae and cryptomonad nucleomorphs: A comparative phylogeny based on small and large subunit rRNA sequences of Palmaria palmata, Gracilaria verrucosa, and the Guillardia theta nucleomorph.
    Van der Auwera G; Hofmann CJ; De Rijk P; De Wachter R
    Mol Phylogenet Evol; 1998 Dec; 10(3):333-42. PubMed ID: 10051386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.