These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 9138065)
1. Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering. Pan J; Leygraf C; Thierry D; Ektessabi AM J Biomed Mater Res; 1997 Jun; 35(3):309-18. PubMed ID: 9138065 [TBL] [Abstract][Full Text] [Related]
2. The intrinsically high pitting corrosion resistance of mechanically polished nitinol in simulated physiological solutions. Bai Z; Rotermund HH J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):1-13. PubMed ID: 21648066 [TBL] [Abstract][Full Text] [Related]
3. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution. Assis SL; Rogero SO; Antunes RA; Padilha AF; Costa I J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):109-16. PubMed ID: 15660438 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation. Shahryari A; Omanovic S; Szpunar JA J Biomed Mater Res A; 2009 Jun; 89(4):1049-62. PubMed ID: 18478556 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions. López DA; Durán A; Ceré SM J Mater Sci Mater Med; 2008 May; 19(5):2137-44. PubMed ID: 17999036 [TBL] [Abstract][Full Text] [Related]
6. The effect of simulated inflammatory conditions on the surface properties of titanium and stainless steel and their importance as biomaterials. Fonseca-García A; Pérez-Alvarez J; Barrera CC; Medina JC; Almaguer-Flores A; Sánchez RB; Rodil SE Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():119-129. PubMed ID: 27207045 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Oliveira NT; Guastaldi AC Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical and surface characterization of a nickel-titanium alloy. Wever DJ; Veldhuizen AG; de Vries J; Busscher HJ; Uges DR; van Horn JR Biomaterials; 1998; 19(7-9):761-9. PubMed ID: 9663751 [TBL] [Abstract][Full Text] [Related]
9. In vitro evaluation of the electrochemical behaviour of stainless steel and Ni-Ti orthodontic archwires at different temperatures. Pakshir M; Bagheri T; Kazemi MR Eur J Orthod; 2013 Aug; 35(4):407-13. PubMed ID: 21771804 [TBL] [Abstract][Full Text] [Related]
10. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Kim H; Johnson JW Angle Orthod; 1999 Feb; 69(1):39-44. PubMed ID: 10022183 [TBL] [Abstract][Full Text] [Related]
11. Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline: Potential and cycles to initiation. Liu Y; Zhu D; Pierre D; Gilbert JL Acta Biomater; 2019 Oct; 97():565-577. PubMed ID: 31374339 [TBL] [Abstract][Full Text] [Related]
12. Structural and electrochemical examinations of PACVD TiO2 films in Ringer solution. Głuszek J; Masalski J; Furman P; Nitsch K Biomaterials; 1997 Jun; 18(11):789-94. PubMed ID: 9177857 [TBL] [Abstract][Full Text] [Related]
13. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246 [TBL] [Abstract][Full Text] [Related]
14. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications. Rondelli G; Torricelli P; Fini M; Giardino R Biomaterials; 2005 Mar; 26(7):739-44. PubMed ID: 15350778 [TBL] [Abstract][Full Text] [Related]
15. In situ imaging and impedance measurements of titanium surfaces using AFM and SPIS. Bearinger JP; Orme CA; Gilbert JL Biomaterials; 2003 May; 24(11):1837-52. PubMed ID: 12615474 [TBL] [Abstract][Full Text] [Related]
17. Corrosion resistance of stressed NiTi and stainless steel orthodontic wires in acid artificial saliva. Huang HH J Biomed Mater Res A; 2003 Sep; 66(4):829-39. PubMed ID: 12926035 [TBL] [Abstract][Full Text] [Related]
18. Bioactive films on metallic surfaces for osteoconduction. Zhang Q; Leng Y; Lu X; Xin R; Yang X; Chen J J Biomed Mater Res A; 2009 Feb; 88(2):481-90. PubMed ID: 18306323 [TBL] [Abstract][Full Text] [Related]
19. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion. Mueller Y; Tognini R; Mayer J; Virtanen S J Biomed Mater Res A; 2007 Sep; 82(4):936-46. PubMed ID: 17335021 [TBL] [Abstract][Full Text] [Related]
20. The role of grain refinement and film formation potential on the electrochemical behavior of commercial pure titanium in Hank's physiological solution. Fattah-Alhosseini A; Imantalab O; Ansari G Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():827-834. PubMed ID: 27987778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]