These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9138264)

  • 21. The new 940-nanometer diode laser: an effective treatment for leg venulectasia.
    Passeron T; Olivier V; Duteil L; Desruelles F; Fontas E; Ortonne JP
    J Am Acad Dermatol; 2003 May; 48(5):768-74. PubMed ID: 12734507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The utilization of a new yellow light laser (578 nm) for the treatment of class I red telangiectasia of the lower extremities.
    Sadick NS; Weiss R
    Dermatol Surg; 2002 Jan; 28(1):21-5. PubMed ID: 11991264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treatment of telangiectasia using the multi-pass technique with the extended pulse width, pulsed dye laser (Cynosure V-Star).
    Tanghetti E; Sherr E
    J Cosmet Laser Ther; 2003 Jun; 5(2):71-5. PubMed ID: 12850799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons.
    Lin Y; Paganetti H; McMahon SJ; Schuemann J
    Med Phys; 2015 Oct; 42(10):5890-902. PubMed ID: 26429263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of different temperatures in cold air cooling with pulsed-dye laser treatment of facial telangiectasia.
    Hammes S; Raulin C
    Lasers Surg Med; 2005 Feb; 36(2):136-40. PubMed ID: 15654714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using a "non uniform pulse sequence" can improve selective coagulation with a Nd:YAG laser (1.06 microm) thanks to Met-hemoglobin absorption: a clinical study on blue leg veins.
    Mordon S; Brisot D; Fournier N
    Lasers Surg Med; 2003; 32(2):160-70. PubMed ID: 12561051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Early clinical results with a multiple synchronized pulse 1064 NM laser for leg telangiectasias and reticular veins.
    Weiss RA; Weiss MA
    Dermatol Surg; 1999 May; 25(5):399-402. PubMed ID: 10469080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical modelling of light distributions in skin tissue following laser irradiation.
    Miller ID; Veitch AR
    Lasers Surg Med; 1993; 13(5):565-71. PubMed ID: 8264329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper bromide laser treatment of facial telangiectasia: results of patients treated over five years.
    McCoy SE
    Lasers Surg Med; 1997; 21(4):329-40. PubMed ID: 9328980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new mathematical approach to the diffusion approximation theory for selective photothermolysis modeling and its implication in laser treatment of port-wine stains.
    Shafirstein G; Bäumler W; Lapidoth M; Ferguson S; North PE; Waner M
    Lasers Surg Med; 2004; 34(4):335-47. PubMed ID: 15083495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methemoglobin formation during laser induced photothermolysis of vascular skin lesions.
    Randeberg LL; Bonesrønning JH; Dalaker M; Nelson JS; Svaasand LO
    Lasers Surg Med; 2004; 34(5):414-9. PubMed ID: 15216535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dual wavelength approach for laser/intense pulsed light source treatment of lower extremity veins.
    Sadick NS
    J Am Acad Dermatol; 2002 Jan; 46(1):66-72. PubMed ID: 11756948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the long pulsed high fluence alexandrite laser therapy of leg telangiectasia.
    Brunnberg S; Lorenz S; Landthaler M; Hohenleutner U
    Lasers Surg Med; 2002; 31(5):359-62. PubMed ID: 12430154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pulsed dye laser treatment, a review of indications and outcome based on published trials.
    Smit JM; Bauland CG; Wijnberg DS; Spauwen PH
    Br J Plast Surg; 2005 Oct; 58(7):981-7. PubMed ID: 16039628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 532-nm Nd:YAG and 595-nm pulsed dye laser treatment of leg telangiectasia using ultralong pulse duration.
    Woo WK; Jasim ZF; Handley JM
    Dermatol Surg; 2003 Dec; 29(12):1176-80; discussion 1180. PubMed ID: 14725658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):524-8. PubMed ID: 15769036
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pulsed dye laser treatment of telangiectasia after radiotherapy for carcinoma of the breast.
    Lanigan SW; Joannides T
    Br J Dermatol; 2003 Jan; 148(1):77-9. PubMed ID: 12534598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal pulse durations for the treatment of leg telangiectasias with an alexandrite laser.
    Ross EV; Meehan KJ; Gilbert S; Domankevitz Y
    Lasers Surg Med; 2009 Feb; 41(2):104-9. PubMed ID: 19226577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical comparison of potassium-titanyl-phosphate (KTP) versus neodymium:YAG (Nd:YAG) laser treatment for lower extremity telangiectases.
    Ozden MG; Bahçivan M; Aydin F; Şentürk N; Bek Y; Cantürk T; Turanli AY
    J Dermatolog Treat; 2011 Jun; 22(3):162-6. PubMed ID: 20666669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Treatment of leg vein telangiectases: 1-year results with a new 940 nm diode laser.
    Kaudewitz P; Klövekorn W; Rother W
    Dermatol Surg; 2002 Nov; 28(11):1031-4. PubMed ID: 12460299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.