These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9138327)

  • 41. Computer simulation on fatigue behavior of cemented hip prostheses: a physiological model.
    Hung JP; Chen JH; Chiang HL; Wu JS
    Comput Methods Programs Biomed; 2004 Nov; 76(2):103-13. PubMed ID: 15451160
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fatigue behavior of titanium femoral hip prosthesis with proximal sleeve-stem modularity.
    Krygier JJ; Dujovne AR; Bobyn JD
    J Appl Biomater; 1994; 5(3):195-201. PubMed ID: 10147445
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A composite hip implant.
    Mendes DG; Roffman M; Soudry M; Angel D; Boss J; Charit Y; Rotem A; Hunt M; Mordechovitch D
    Orthop Rev; 1988 Apr; 17(4):402-7. PubMed ID: 3405625
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Precooling of the femoral canal enhances shear strength at the cement-prosthesis interface and reduces the polymerization temperature.
    Hsieh PH; Tai CL; Chang YH; Lee MS; Shih HN; Shih CH
    J Orthop Res; 2006 Sep; 24(9):1809-14. PubMed ID: 16865715
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of femoral component material properties on cementless fixation in total hip arthroplasty. A comparison study between carbon composite, titanium alloy, and stainless steel.
    Otani T; Whiteside LA; White SE; McCarthy DS
    J Arthroplasty; 1993 Feb; 8(1):67-74. PubMed ID: 8436992
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Shape optimization of metal backing for cemented acetabular cup.
    Hedia HS; Abdel-Shafi AA; Fouda N
    Biomed Mater Eng; 2000; 10(2):73-82. PubMed ID: 11086841
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Repair of bone segment defects with surface porous fiber-reinforced polymethyl methacrylate (PMMA) composite prosthesis: histomorphometric incorporation model and characterization by SEM.
    Hautamäki MP; Aho AJ; Alander P; Rekola J; Gunn J; Strandberg N; Vallittu PK
    Acta Orthop; 2008 Aug; 79(4):555-64. PubMed ID: 18766491
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanics considerations for microporous titanium as an orthopedic implant material.
    Thelen S; Barthelat F; Brinson LC
    J Biomed Mater Res A; 2004 Jun; 69(4):601-10. PubMed ID: 15162401
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cement mantle fatigue failure in total hip replacement: experimental and computational testing.
    Jeffers JR; Browne M; Lennon AB; Prendergast PJ; Taylor M
    J Biomech; 2007; 40(7):1525-33. PubMed ID: 17070816
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Bone grafts in hip prosthesis revisions].
    Krbec M; Adler J; Messner P
    Acta Chir Orthop Traumatol Cech; 2003; 70(2):83-8. PubMed ID: 12807040
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling.
    Be'ery-Lipperman M; Gefen A
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):35-44. PubMed ID: 16880155
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Feasibility of knitted carbon/PEEK composites for orthopedic bone plates.
    Fujihara K; Huang ZM; Ramakrishna S; Satknanantham K; Hamada H
    Biomaterials; 2004 Aug; 25(17):3877-85. PubMed ID: 15020164
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparative FEA of the debonding process in different concepts of cemented hip implants.
    Pérez MA; García-Aznar JM; Doblaré M; Seral B; Seral F
    Med Eng Phys; 2006 Jul; 28(6):525-33. PubMed ID: 16257253
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stress Shielding and Bone Resorption of Press-Fit Polyether-Ether-Ketone (PEEK) Hip Prosthesis: A Sawbone Model Study.
    Naghavi SA; Lin C; Sun C; Tamaddon M; Basiouny M; Garcia-Souto P; Taylor S; Hua J; Li D; Wang L; Liu C
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365594
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proximal humeral fractures: how stiff should an implant be? A comparative mechanical study with new implants in human specimens.
    Lill H; Hepp P; Korner J; Kassi JP; Verheyden AP; Josten C; Duda GN
    Arch Orthop Trauma Surg; 2003 Apr; 123(2-3):74-81. PubMed ID: 12721684
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of hip joint prosthesis damage.
    Bajs ID; Sarić V; Opalić M
    Coll Antropol; 2001 Jun; 25(1):263-8. PubMed ID: 11787549
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Technical and histologic analysis of a retrieved carbon fiber-reinforced poly-ether-ether-ketone composite alumina-bearing liner 28 months after implantation.
    Pace N; Marinelli M; Spurio S
    J Arthroplasty; 2008 Jan; 23(1):151-5. PubMed ID: 18165046
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.
    Bagheri ZS; El Sawi I; Bougherara H; Zdero R
    J Mech Behav Biomed Mater; 2014 Jul; 35():27-38. PubMed ID: 24727574
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigating stress shielding spanned by biomimetic polymer-composite vs. metallic hip stem: A computational study using mechano-biochemical model.
    Tavakkoli Avval P; Samiezadeh S; Klika V; Bougherara H
    J Mech Behav Biomed Mater; 2015 Jan; 41():56-67. PubMed ID: 25460403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.