These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 9138501)

  • 1. [The characteristics of crystalline lens metabolism].
    Preda M
    Oftalmologia; 1997; 41(1):8-11. PubMed ID: 9138501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The physiopathology of primary cataract].
    Stănilă A
    Oftalmologia; 1995; 39(4):302-6. PubMed ID: 7577898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Participation of singlet oxygen in the development of senile cataract].
    Birich TV; Pozniak NI; Byteva IM; Luka ZA; Ugolev II
    Oftalmol Zh; 1985; (7):388-91. PubMed ID: 4088559
    [No Abstract]   [Full Text] [Related]  

  • 4. Role of short-range protein interactions in lens opacifications.
    Ponce A; Sorensen C; Takemoto L
    Mol Vis; 2006 Aug; 12():879-84. PubMed ID: 16917488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular ions, protein metabolism, and cataract formation.
    Piatigorsky J
    Curr Top Eye Res; 1980; 3():1-39. PubMed ID: 7047087
    [No Abstract]   [Full Text] [Related]  

  • 6. [Interaction of inflammation mediators (myeloperoxidase and defensin) with mixed monolayers from lens lipids and crystallins].
    Chovnikova LV; Formaziuk VE; Sergienko VI; Kokriakov VN; Belikova TV; Vladimirov IuA
    Biofizika; 1991; 36(5):879-84. PubMed ID: 1665986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein carbonylation and glycation in human lenses.
    Balog Z; Klepac R; Sikić J; Jukić-Lesina T
    Coll Antropol; 2001; 25 Suppl():145-8. PubMed ID: 11817006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on degradation of glucides in crystallin during naphthalene induced cataract.
    NORDMANN J; ZIMMER J; MANDEL P
    C R Seances Soc Biol Fil; 1952 Nov; 146(21-22):1804-5. PubMed ID: 13043049
    [No Abstract]   [Full Text] [Related]  

  • 11. [Physiopathology of the crystalline lens].
    Skubiszewska T
    Pol Tyg Lek; 1981 Apr; 36(14):509-11. PubMed ID: 7267425
    [No Abstract]   [Full Text] [Related]  

  • 12. Methylglyoxal-derived modifications in lens aging and cataract formation.
    Shamsi FA; Lin K; Sady C; Nagaraj RH
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2355-64. PubMed ID: 9804144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal biochemical changes in rat lens: an important factor in cataract models.
    Fris M; Midelfart A
    Curr Eye Res; 2007 Feb; 32(2):95-103. PubMed ID: 17364742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of excess dietary glucose on protein metabolism in the lens].
    Ono S; Hatano M; Obara K
    Igaku To Seibutsugaku; 1969 Jan; 78(1):27-30. PubMed ID: 5813563
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural function of MIP/aquaporin 0 in the eye lens; genetic defects lead to congenital inherited cataracts.
    Chepelinsky AB
    Handb Exp Pharmacol; 2009; (190):265-97. PubMed ID: 19096783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Chaperon-like anticataract agents, the antiaggregants of lens crystallin. Communication 4. Study of the effect of a mixture of di- and tetrapeptides on a prolonged rat model of UV-induced cataract].
    Avetisov SE; Polunin GS; Sheremet NL; Makarov IA; Fedorov AA; Karpova OE; Muranov KO; Dizhevskaia AK; Soustov LV; Chelnokov EV; Bitiurin NM; Sapogova NV; Nemov VV; Bodyrev AA; Ostrovskiĭ MA
    Vestn Oftalmol; 2008; 124(2):12-6. PubMed ID: 18488462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Studies on glycolysis in the crystalline lens; determination of phosphofructokinase, hexokinase, aldolase, and triose phosphate dehydrogenase in the beef crystalline lens].
    MANDEL P; IZRAELEWICZ D
    C R Hebd Seances Acad Sci; 1954 Jan; 238(3):404-6. PubMed ID: 13141481
    [No Abstract]   [Full Text] [Related]  

  • 18. Ageing and vision: structure, stability and function of lens crystallins.
    Bloemendal H; de Jong W; Jaenicke R; Lubsen NH; Slingsby C; Tardieu A
    Prog Biophys Mol Biol; 2004 Nov; 86(3):407-85. PubMed ID: 15302206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparency and non-refractive functions of crystallins--a proposal.
    Bhat SP
    Exp Eye Res; 2004 Dec; 79(6):809-16. PubMed ID: 15642317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human lens epithelial cell line.
    Ibaraki N; Chen SC; Lin LR; Okamoto H; Pipas JM; Reddy VN
    Exp Eye Res; 1998 Nov; 67(5):577-85. PubMed ID: 9878220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.